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On Homometric Sets. II. Sets Obtained by Singular Transformations

By R. K. BuLrLouGH
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The theorem that sets which have the same weighted vector set continue to do so when subjected
to the same non-singular affine transformation is extended to singular transformations, but it does
not follow that homometric sets (h.s.) necessarily remain homometric under singular transforma-
tions although they may do so. It is also shown that sets which are not homometric may become
homometric under singular transformations. The singular transformation of periodic sets offers
special difficulties. It is shown that ‘almost all’ singular transformations of periodic sets do not
exist.

The (enumerable) infinity of transformations which do exist can be a source of new h.s., but the
recognition of distinet homometric pairs (h.p.) is usually not simple. It is shown that every h.s. is
a degenerate example of a larger h.s. and this occasions a re-examination of the definition of distinct
h.s. An investigation is made of sets which become the 4-point pair IT; of part I under the same
particular singular transformation. An argument which seems to be fairly general is used to prove
that two 5-point pairs with this property are distinct but they are only two of many sets which
transform to I7,. It is shown that an (enumerable) infinity of distinct h.s. can be reduced to IT,.

It is suggested that h.s. obtained by singular transformations cannot be considered to be examples

of their generating sets as are h.s. obtained by non-singular transformations.
A group property of h.s. obtained by singular transformations is touched upon.

1. Introduction

In an earlier paper (Bullough, 1961), hereafter referred
to as I, it was shown (I, Lemma 1) that if two periodic
or non-periodic point sets were homometric to each
other they remained homometric when each was
subjected to the same affine transformation

Te=Az+c (1)

in which A is a real non-singular m-dimensional
square matrix. Accordingly it was argued that all
homometric pairs (h.p.) related one to another by
non-singular transformations should be counted as
the same h.p.: h.p. are then invariant under the full
affine group.

The notation of (1) for Tx means that x, which
is to be interpreted as an m-dimensional column
vector, is subjected to transformation by the matrix A
followed by translation by the vector ¢: AX is matrix
multiplication. In I the notation A.x was used to
distinguish matrix multiplication from the operation
signified by Tx. It is convenient no longer to make
this distinction: the more usual notation Ax for
matrix multiplication is adopted and the transpose
of A (or x) is denoted by A’ (or x'); ‘transformation
under A’ means transformation by T with matrix A.
The remaining notation of I is adopted without
further explanation.

Now it is known (Hosemann & Bagchi, 1954,
Figs. 2 and 3) that sets homometric in m(>1) dimen-
sions can remain homometric when subjected to the
same singular transformation. Thus if V is a singular
affine transformation with matrix

AC17 — 20

B

in which P is a non-singular r-dimensional square
matrix (r<m) then, in the notation of I, if S; )—( Sz
in m dimensions, it may be that V.8, )—( V82 in
r dimensions. More generally if B is of rank r it may
be that V&8i)—(VS8: in r dimensions. But any
r-dimensional vector X,=(z1, ..., %;) can be treated
as an m-dimensional vector X, by adjoining m—r
constant components, e.g. X, = (1, ..., 2r, 0, ...,0)
with m—r noughts is an m-dimensional vector.
Hence if B is of rank 7, V.S1 )—( VSz in m dimensions.
One question which now arises is whether S; and Vi
are the same h.s. even though V is singular.

In I it was briefly noted that a generalization of
the 1-dimensional h.p. I74 of I (8) and I, example
(i) to two dimensions was

Sl:((oy O): (a9 b)9 (%"'a’ 71f+b)s (%,
1
2

11,1, 1)
S2=((0, 0), (@, b), (E+a, §+b), (3, b); } @)

)
2
5 1,1,1,1)

and that under the singular matrix

5-[; i @

it became
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which is a particular example of (2) with a=b(=u).*
Hence it was argued in I that in the absence of other
information S; and V.8; should be counted as identical.
In this paper (II) singular transformations are ex-
amined more completely: it is shown that whilst
S; and V8 may be the same set they are in general
distinct. This is perhaps more consistent with the
fact that V-1 does not exist: for then, as we show,

V81 )—( V82 + 81 )—( Sz, S1)—(S2+ V81 )—(V&e.

But distinction between h.s. can be difficult and is
sometimes necessarily arbitrary. For example, the
equivalence of h.s. under the affine group is very
much less simple than envisaged in I: three examples
which show an unexpected affine equivalence are
noted in (29) (the pairs Pz and Ps), (30), and (42)
below yet these pairs are in some sense obviously
distinct. At the same time it is shown (Theorem 16)
that all h.s. are degenerate examples of larger h.s.
and in § 5 the definition of distinet h.s. is re-examined
in the light of this theorem.

It is also shown in the present paper (II) that if
two non-periodic sets S; and Sz have the same

weighted vector set in m-dimensions, i.e. 8181 = 8285,
then they continue to do so in r (< m) dimensions
under any affine transformation whatsoever, singular

or non-singular, i.e. if S¥=TS81, SF=TS:, SFSf=

S¥8¥ for any T and any matrix A. The result for
non-singular transformations was proved in I (6),
and it was also applicable to periodic sets; but the
extension to singular transformations offers difficulty
on two counts. The first difficulty, the presence in
the result of det A-1, which does not exist when
A is singular, is more apparent than real; the second
difficulty, that of the interpretation of all but a
relatively small class of h.s. transformed by singular
transformations when those h.s. are periodic, seems
to be fundamental. It appears that transformed
periodic sets are not necessarily meaningful when
they are derived by singular transformations and
although the result above remains true as a formal
limit if necessary, it can be interpreted only for an
enumerable set of singular transformations. On the
other hand, an investigation of h.p. under singular
transformations cannot be confined to the simpler
case of non-periodic h.p. for (¢f. I, and §4 below)
the class of periodic h.p. includes all non-periodic h.p.
together with pairs which are homometric only when
infinite and periodic.

A further indication of the motivation for the
content of the present paper is the evident truth
of the following theorem:

* The considerations of § 4 show that this result is to some
extent fortuitous (cf. the example (20) below where under B
single projected lattice unit cells do not have the same vector
set).
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TrrEoreEM 17: If 8181=282S: and an affine trans-
formation T non-singular or singular exists (in the
sense of Theorem 14 below in the second case) such
that TS, )—( TS, then S; )—( Se.

For if T is non-singular, then if SF=TS1, S§¥=TS:

S¥ )—( 8F - T-18F )—( T-18f (by I, Lemma 1)
or
S )—(Se.
If T is singular

&/\S1=82;§2—> S]_E Sz, Sl~S2 or Sl )'—"( SZ-
But
SlEAgz—)S*ES;‘, Sl~82—>S;k~S§k

The theorem asserts that if two sets have the same
weighted vector set in m>1 dimensions and can be
shown to project to a h.p. in a smaller number of
dimensions they are necessarily homometric in
m dimensions. This theorem is invaluable in the
building up of m-dimensional h.p. from 1-dimensional
h.p. as will be shown in part III of this series; for
although it is often easy to generate m-dimensional
pairs with the same vector sets it is not always easy
to show that such pairs constitute a h.p. This difficulty
was already evident in the arguments of the earlier
paper (I).

One only of the conditions of Theorem 17 is not

sufficient and its converse is not true: 8§ )—(SF-+- S18;

=§2—§2 (and a fortiori + S1 )—( Sz as noted above)
as is shown in Example (ii) of §5; and Si)—( S

(— 8,81 = 828: — S¥8F =8¥SF by Theorems 13 and
15 below) +» S* )—( S¥.

2. Vector sets under linear
transformations

If S is a point set as in I, SS is its vector set. In
order to prove Lemma 1 of I it was shown (I(6))
that if A is non-singular and S is a point set of N m-
dimensional §-functions of weights zo, ..., zy-1, then
if TS= 8%,

T(S8)=|det A|-15*3* . (1(6))

This result is sufficient to prove I, Lemma 1 when
det A # 0 but becomes meaningless when T is singular
and det A=0. But the extension of I(6) to this
latter case is possible because the presence of det A
in I(6) is in fact illusory. Equation I(6) as proved
is actually applicable to any function S(x) what-

soever (provided S is integrable and S8 exists).
We shall first show that det A(# 0) does not appear

in I(6) if T(;é’T—S’_) and S* are properly normalized and
S is any non-periodic function, we then prove I(6)
when det A=0 for any properly normalized non-
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periodic set, S, of d-functions; in § 3 and § 4 we then
extend the proof to periodic sets but this requires
an investigation of the meaning of S*=TS when
S is periodic and T singular.

In the proof of I(6) S and TS were assumed to be
such that to every point x in § corresponds Tx in TS.
Hence

TS(x)=8(T-x) . (5)

If S has a certain total weight Z,
7 = SS(x)dr

where, since S is assumed non-periodic, the integra-
tion is over all space. The weight of TS is therefore

S S(T-1x)dr = |det A| S S(x)dz = |det A|Z .

If this total weight is to be unchanged in the trans-
formation induced by T we must use not (5) but
TS=|det A|-18(T1x) . (6)

We can now complete the proof of I(6): we give it
in full since I(6) contains a small error. We have

T(SR) = |det A1 S S(y)8(y —T-1x) dv
— |det A[—2S S(T-1y)S(T-1y — T-'x)dz

but it was not noted in I(6) that

Tly—T1x=AY(y—c)—A(x—c)

=AY y—-x)=T(y—-x+c).
Hence, if
S*=TS8=|det A-1|8(T-1x),

then in the notation of I, Definition 1

T(S8) = §*3*+¢ (7a)
and
T(SR) = §*3* (7b)

changing the equality in 1(6) to identity.

The argument fails when T-! does not exist.
Suppose for the moment that det A # 0. The matrix
A is not symmetric in general, but (¢f. Appendix)
we can always write

A=CO

where C is a symmetric m-dimensional square matrix
and O is m-dimensional orthogonal (det O= +1).
The dimensionality of CO is then lm(m+ 1)+
tm(m—1)=m? equal to that of A. The matrix O
is non-singular and simply introduces a combination
of rotations and reflexions which can be ignored
because (I, Lemma 1) if, and only if, S; )—( Sz then
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OS8; )—( O8z2.* Because C is real symmetric it has
real eigen values and may be diagonalized by ap-
propriate choice of the coordinate axes. If we now
consider a singular transformation as the limit of a
non-singular one, the only singular matrices are
diagonal ones. This is considered more completely
in (i) of the Appendix.

As in I, suppose that Sis a set of N m-dimensional

S-functions:
N1

S(x) = D 2i0(x—Xq) . (8)
i=0

When C is non-singular diagonal

C=diag (c1, ..., ¢m); ¢r# 0, 1 <r < m;
also m )
O(x—xi) = IT 6(xr—a)
r=1
where ) )
xX'= (xl, ) xm), Xi=(x(11)’ ey xg:z)) )
and so

CH(x—x;) = |det C|-! ﬁ (c; ey — D)
r=1
= ﬁ ;10 {c; (@ — craD)} .
r=1

But from the definition of the §-function it follows
that
O{er (@ — crt®)} = ¢, 6(r — crx®)
and
m
Co(x—x¢) = [T 6(xr—cra®) .

r=1

This shows that, when S is of the form (8) and TS
is defined as in (6), S and TS are such that a point
of weight z; at x; in S becomes a point of the same
weight at Tx; in TS as was originally required in I.
This will always be the meaning of TS in the future
whether T is non-singular or not. When T-1 exists
this interpretation is precisely equivalent to (6).
When any ¢, say cs, tends to zero, Cd(x—x) is an
m-dimensional ¢§-function located on the point
(crrf?, ..., 0, ..., cxP) with O in the sth place.
It follows that

—_

T(89)= /’;\S*+c = §*3* (9)

whether C is non-singular or not. Since A is arbitrary
the argument is in no way restricted to the orthogonalt
‘projections’ resulting when ¢;=0. The number, N,
of points in the set S can be as large as one pleases,
but § is for the moment assumed non-periodic.
The result (9) is almost trivial since if T is to
have the property of changing x; in S to Tx; leaving

* OS, in which O is a matriz is used to mean the set TS
in which T is such that Tx= Ox, i.e. is a homogeneous affine
transformation.

T An orthogonal basis is assumed here but this is of course
not necessary (see the discussion in (ii) and (iii) of the Appen-
dix).
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z; unchanged, x; and x; become Tx; and Tx; leaving
z; and z; unchanged, whilst (x; —X;) becomes T(x; —x;)
leaving 2;z; unchanged, and this is true even when
T is of rank r <m (restricting Tx;, Tx; and T(x;—X;)
to an r-dimensional sub-space of the m-dimensional
space). Its essential simplicity should not obseure its
importance: we have, in fact

TreEorREM 13. If S; and S: are not periodic and

8181= 828z, and if S¥=TS;, S¥=TS: where T is
any real affine transformation whatsoever, then

S¥R¥ = S¥8r .

The equality follows from (9) because
S¥S¥+c=8#SF+c.

The theorem is equally true when A has complex
elements but this does rather less than extend the
theorem to 2m dimensions. An incomplete proof of
(9) is also given in (iii) of the Appendix for sets much
more general than (8). The theorem is much less
obvious here since it appears to require the particular
interpretation (43) of AS.

Theorem 13 is applicable to periodic sets when
T is non-singular. When T-1 exists I(7) and I, Lemmma 1
follow. Whether T-1 exists or not we always have
Si1= 82> 8Ff = 8%, S1~ 82—~ S~ S¥ but when
T-! does exist, it cannot be inferred from Theorem 13
that 81 )—( Sz — SF )—( S¥. Moreover the converse
of Theorem 13 does not necessarily hold: when T-1
does not exist

st'ik=§;‘\§§k+ﬂ§1-§1=§2-§2-

Hence it is possible to obtain h.p. by singular trans-
formations of pairs which are not homometric.
Indeed, when T-! does not exist S¥, SF imply little
about §i, S2: so much so indeed that we can have
8z # 81, Sa # S, S¥=S8F, S¥=8%, S )—( SF whether
or not either or both of S3)—( Sy, Sy }—( Sz obtain,
and the correspondence of Si)—( Sz to S¥ )—(S¥
can at least be many-one. It follows that when
T is singular 81 and S¥=T&S, cannot be the same
h.s. in general. Examples of these various relations
appear in § 3 and § 4.

3. Transformations of periodic sets.

The difficulty associated with the transformation of
periodic sets arises because such sets necessarily
contain an infinite number of points. An obvious
example is that occurring when A is the singular
matrix

where o is non-singular and (m—1)-dimensional, pro-
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jecting § down the m axis. If S is periodic, an infinity
of points exist with coordinates (1, ..., Zm-1, @)
each with different a, and TS contains a set of points
with infinite weights lying in the plane x,=0.
But it is clearly sufficient to project only those
points lying between z,=0 and z,=1 onto z,=0,
since the remaining part of the lattice only superposes
copies of the projected set. The obvious way to
submit a periodic lattice to a singular transformation
is therefore to submit only a fundamental portion of
it to the transformation. The particular fundamental
portion is determined by the particular transformation.

We consider only orthogonal projections: these do
not necessarily include all possible projections since
although the lattice may be sheared in such a way
as to make the subsequent projection orthogonal the
resulting lattice is no longer a primitive cubic lattice.
However, there seems to be no difference in principle
between orthogonal and non-orthogonal projections.

We can project orthogonally in an arbitrary fashion
from m to m—1 dimensions but the result may not
be meaningful. For we can project orthogonally in
an arbitrary direction n (with transpose n’ =
(n1, ..., nm)) in m dimensions onto an (m—1) dimen-
sional hyperplane normal to n. A hyperplane passing
through a lattice point at the originis n'r=0. A vector
An passing through the origin must either intersect
no more lattice points or it must intersect an infinity
of them. For if it intersects one for A=1; (say), then
Jin is a lattice translation and there are lattice points
at vJin for any positive or negative integer ». If L;n
is a lattice vector and there is no value of A lying in
0<A<|A| such that An is a lattice vector then,
extending a usage of (H.W., 29),* the point with
position vector Ain will be called a ‘visible point’:
any direction n which defines a ‘visible point’ An for
some A will be called a ‘visible direction’.

If Z1n is a visible point then it is sufficient to project
down n onto n'r=0 all points which lie between the
planes n'r =0, n'r =4y, satisfying (for 1, >0) 0<n'r < ;.
Combined with this condition the matrix for the
projection must be such that r becomes s where
n's=0 and

r+un=s.
Hence u= —n'r and

s=r—n(n'r)=(l,,— M,)r

where 1., is the m-dimensional unit matrix and M,
is an m-dimensional square matrix with components

(M)ij=nin; . (10)
The required matrix is therefore

* As in I, (HL.W., k) refers to page k of Hardy & Wright
(1954).
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and provided visible directions can always be found*
An, An-1,...,Apnr will perform any projection
from m to r dimensions. The projected set is clearly
periodic in (m—1) dimensions since any lattice vector
u in § becomes

(L —Mp)u=v (say)

in TS and vu becomes »v and the sets are therefore
periodic in r dimensions.

If n is not a visible direction, 7.e. An intersects no
lattice points other than the origin, there are at most
N points on the line An; for if An is not a lattice
vector it cannot intersect more than one equivalent
of any of the N points in the unit cell. Hence no
difficulty arises from the superposition of an infinite
number of points in the projection and it is sufficient
to project all points lying on the line

r=s-+/.n

onto the point s by the matrix (Im— Mu). The pro-
jected set necessarily remains periodic but the dif-
ficulty is now that the unit of repeat has a zero
hyperarea in the plane n'r=0. This is so because
no two cells of the lattice superpose on this plane
yet the total number of cells of the lattice must be
preserved : the projected cells necessarily overlap and,
since the number of points of the lattice is enumerable
in each of m linearly independent directions whilst
that of the projected set is enumerable in only m—1
linearly independent directions, there are other lattice
points of the projected set arbitrarily close to any one
lattice point of the projected set. Projected sets of
this type obviously require a special interpretation
and may be meaningful only as a formal limit.
A fortiori successive projections of sets of this type
may not be meaningful and, when n is not a visible
direction, it is not obvious that projections from
m to r<m—1 dimensions are still possible. However,
it may be possible to project directly as in the fol-
lowing.

We consider the important case of orthogonal
projection from m to 1 dimensions by a matrix of
rank 1. If T has such a matrix it transforms every
point lying in the hyperplane

n'r=p

into the point pn. The required matrix is therefore
the matrix M,,: for convenience we henceforth drop
the subscript. If the origin is a lattice point then
either n'r=0 contains no other lattice points or it
contains an infinity of them. In the first case it is
sufficient to project every point in n'r=p onto pn.

* It is shown below that if n is visible n’r=0 contains
lattice points repeating in (m—1) linearly independent direc-
tions: this is also true only if n is visible. Therefore successive
projections from m to r dimensions are always possible if
every n is visible but may not be possible if n at any stage
is not visible.
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In the second case n'r=0 will contain in general
a periodic set of lattice points repeating along up to
m—1 linearly independent directions. For if Au; is a
lattice point in this plane so is vAu, and if yu: is a
lattice point (uz # »u1) so is »1Au; +vspuus, and so on.
If n'r=0 contains a periodic set repeating in up to
(m—1) linearly independent directions, then it is
sufficient to project exactly one of each inequivalent
point (with maximum number N) lying in n'r=p
onto pn by the matrix M.

The line An through the origin will intersect either
none or an infinity of other lattice points. Suppose
n is visible with a visible point Ain. Under T with
matrix M S becomes T.S periodic with one period | A;|n.
But in fact the period is < |1;|n.* For if the hyperplane
n'r = 0 contains a lattice repeating along m—1
linearly independent directions it contains a cell of
finite hyperarea A4 such that |4;]A contains an
integral number of lattice unit cells. Hence the period
of the projected set lying along n is 1/4. For it is
clear that, since every lattice point is equivalent to
every other, any lattice point projected onto the
line An must be equivalent to any other and if Ain
contains |4:]4 projected lattice points the set on An
repeats every 1/4.

The area A of the unit cell in the hyperplane can
be found as follows. Since A;n is visible, it is a lattice
point and is such that for 0 < A< |4, An is not a.
lattice point. If

An'=(p,q, ..., w)

then, by the first property, the m components:

P, ¢, ..., w are integers which, by the second property,
have no common factor. The positive integers
|21, lgl; - .., |w] are therefore relatively prime but not

necessarily relatively prime in pairs (H.W., 48).
If the hyperplane n'r=0 contains lattice points
repeating in (m—1) linearly independent directions
with unit cell of area 4, this cell is the base of a ‘unit
cell’ of a volume |A41]4 which contains an integral
number of lattice points and must therefore be an
integer. Since
=@+ + ... +w?)}

and | 4|4 is an integer for every choice of the integers
»,q, ..., w we must have

A=(p2+g2+ ... +u)tf(p, q, ..., ) (11)
where f(p, q, ..., w) is a homogeneous polynomial in
P, ¢, ..., w with integral coefficients.

To determine the function f we use an argument
specifically for four dimensions (m=4) which can
obviously be generalized to m>4. We require three
linearly independent lattice vectors with components
x, ¥, z, v necessarily integral satisfying

pr+qy+rz+sv=0 (12)

* 4.e. the length of the period in the direction n is < |4,|.
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in which the components of (p, ¢, 7, s)= A’ are also
integers. A set is

u1'=(s, 0: 0’ —Z’)’ u2'=(r, O, —P, O)» u§=(q, —P, 0; g)
(13)

and this is true for all integral p, g, 7, s. Incidentally,
this and its generalization demonstrate that if Ain
is a visible point and n a visible direction the points
of the hyperplane perpendicular to n necessarily
repeat in m—1 linearly independent directions (see
footnote on p. 299). The cell defined by the vectors
(13) is a unit of repeat in the hyperplane (12) but it
is not necessarily the smallest such unit: in particular,
if e.g. p and s have a common factor d, u; should
be replaced by

u,=(s/d, 0,0, —p/d) .

The hyperarea of the cell defined by (13) is therefore
an integral multiple of (11).

The area of the base of the cell defined by the
vectors u, Ug is

[uful — (uue)?]t = p(p2+ 52+ 72)%, (14)

A perpendicular to u; and s lying in the plane (12)
is the vector

(Do, 7, 8)5 = —(p+72+5%)/q .

‘This is of length

I=(p2+r2+s+o2)t=(p2+r2+s2)t

X (pP+gi+ritsttg .
The projection of u; in this direction is
(pg—oep)l=p(p2+ P+ + ) (P2 412+ 52)
and the hyperarea of the cell is
PAPP+ g+ 72+ %), (15)
It is clear that for m=5 one can consider vectors

ll1,=(t, 0,0,0, —-P) l]2/=(8, 0,0, -~ P, 0)’
ué:(r’ O’ -—P Oy O), u4/1=(q’ ) O, O’ 0) )

instead of (13), and (15)* replaces (14). The argument
then continues as from (14) and the hyperarea is

PP+ +re+si+iR)h,
and in general the hyperarea is

PP P2+ @2+ ... +u2)t, (16)

Since (16) is an integral multiple of (11) and
f(p,q, ..., w)is homogeneous in p, ¢, ..., w it follows
that the hyperarea 4 of the unit cell in the plane
n'r=0 is

A=(p2+q2+... +uw?)t.

In particular when m=2,

* With r, s, ¢ replacing p, r, s respectively.
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A=(p*+g)}

which is known from simpler considerations.

When n is a visible direction |p|, [q], ..., |w| are
relatively prime. When n is not visible we consider
this as the limit of |p|, |g|, ..., |w| tending to oo in
such a way that they remain relatively prime, i.e.
so that at least one ratio e.g. |p|/|q| is irrational.
In this case 4 tends to oo and lattice points in n'r=0
repeat in at most m—2 linearly independent direc-
tions. At the same time the length 1/4 of the unit
of repeat of the set projected on the direction n tends
to zero.

The magnitude of the unit of repeat of the projected
set remains equal to unity if instead of the matrix M
of (10) we use

(PP+g+...+w?)iM. (17)

This matrix exists for every set of integers
(p,q, ..., w). Hence we can project periodic sets
orthogonally onto all visible directions. The matrix
does not exist when |p|, |g|, ..., |w| tend to oo and
the projection is not possible when n is not a visible
direction. On the other hand, when n is not a visible
direction, we can project onto directions m which
approach n as closely as we please. Nevertheless,
since the number of lattice points is enumerable the
number of visible points is enumerable and the matrix
(17) does not exist for ‘almost all’ directions n.
The matrix M of (10) exists for all n but the unit
cell of the projected set has ‘almost always’ nothing
but formal significance — as far as the theory is
developed here. We shall therefore say that a projec-
tion onto the direction n exists only when (17) exists.
Analogous matrices which may exist or not will also
occur in the singular transformations of m-dimensional
sets to 7( <m) dimensions.

We have proved the theorem:

TaeorEM 14. Orthogonal projections of rank 1 of
periodic sets S onto directions n exist if, and only if,
n is visible.

We have also proved the

CororLrLARY: ‘Almost all’ such projections do not
exist.

Provided the projection T onto a direction n exists
we can extend Theorem 13 to the case of periodic
sets. Theorem 13 is valid for sets S; and S» containing
arbitrary numbers of points N; and N: but even
when the projection is interpreted in the sense of the
discussion above this does not mean the extension
is immediate. Certainly if S; and Sz are periodic the
implication that N; and N» are enumerably infinite
now causes no difficulty per se: the real difficulty
in the direct appeal to Theorem 13 is that when two
infinite periodic sets are convoluted the resultant
periodic set is meaningful only when ‘factored’ once
by the periodic set of lattice points. Suppose Ci is
the content of the unit cell of S; and L is its lattice.
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Then as in §4 below (but there with a different
interpretation of Ci) S1=C1L, but 8 is C;C1L and
not CrC1LL. Since L=I, §,8 is factored’ once by L.

This is necessary because LL is a periodic lattice of
d-functions in which each 6-function has infinite

weight: L is, therefore, a ‘renormalized’ LI and
Theorem 13 could be applicable only if the re-
normalization could be carried through.

When the projection T exists (so that n is visible)
both the superposition of points and the renormaliza-
tion are avoided by projecting only finite parts of
81 and S; (which we call their ‘cells for projection’
in §4): this means that the two finite sets to be
projected are not necessarily homometric — for it
was noted in I and §1 here, that certain sets are
homometric only when their unit cells lie in
(m-dimensional) infinite lattices. Paradoxically this
second difficulty is avoided when n is not visible
provided only finite superpositions of points occur in
the projection of the whole lattice; and this is certainly
50 in the extreme case when the plane normal to n
contains no more than one equivalent of each point,
1.e. when every ratio p/q, p/r, q/r, etc. is irrational.

But now although T8;, TSz and T(S181)=T(S282)
can be said to exist as everywhere ‘dense’ (H.W. 121)
projections of all the points of each set, still the
convolution of TS8; and TSz could be taken only by
factoring out one convolution of the projected set of
lattice points. Moreover since TS; and TS: contain
O-functions located on lattice and other points
arbitrarily close to other é-functions on lattice and
other points, both the process of convolution and the
process of integration itself is now undefined. The
sense in which Theorem 13 remains true for periodic
lattices when the projecting matrix ‘does not exist’
(in particular in the sense that (17) does not exist
except for visible n when the rank is 1) is thus of
considerable mathematical interest but requires an
extension of interpretation that we shall not attempt
in the present paper. When (17) exists, however,
the same result which we prove as Theorem 15 below
is of interest because the unit cells of S overlap in
the projection, forming new unit cells, and the
projected set S8* can be very different from the set S.
Hence the possibility exists of obtaining essentially
new h.s. in r dimensions by the projection of h.s.
in m(>r) dimensions.

4. Transformations of periodic
vector sets

We assume that the situation for transformations T
of a rank r (<m) is strictly analogous to the situation
considered in detail above for transformations of
rank 1. If the transformation exists, hypcrarcas of
magnitude 4 of which one has lattice points at its
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corners are projected onto each point of a second
hyperarea of magnitude A’ also with lattice points
at its corners, and the two areas with lattice points
at their corners define a cell (for orthogonal projection
of volume AA4’) in the m-dimensional periodic set S
which we can call a cell for projection (c.p.). If

S8181=23828:2, 81 and Ss must have a common lattice
which as usual we choose to be primitive cubic with
unit lattice constant. The c.p. of S; is then identical

with that of Sp and it is also the c.p. of 818 and S;S..

If S; and Sz have the same weighted vector set
it does not necessarily follow that the content C; and Cs
of the c.p.s. of Sy and S have the same vector set.
Suppose first they have.

The simplest case of this occurs when the contents
of the unit cells of S1 and Sz have the same weighted
vector set. In this case the contents of the unit cells
can be abstracted from their lattices and have the
same weighted vector set when projected in any
direction whatsoever according to Theorem 13. They
may then be inserted in a new periodic lattice in the
projected space and will still have the same weighted
vector set.

An example is that of Hosemann & Bagchi (1954).
Their Fig. 1 contains the non-periodic h.p.

Sl:((_l’ O), (_11 _1)’ (Oa _2)’ (19 _]-), (1’ 1)5 (2a 1)7
1,1,1,1,1,1)

Sz:((—l’ O)’ (O’ —'l)a (Oa 1)5 (1: _l)a (23 1)5 (29 2)’
1,1,1,1,1,1)

in an orthogonal system of axes. Under the singular

matrix
4 -1
0 0

this h.p. becomes their Fig. 3 namely

S¥ and S¥ have the same 1-dimensional non-
periodic vector set according to Theorem 13, and in
fact they constitute a h.p.

It is interesting to observe that, from one point
of view, S; and S: are unchanged in H.B.’s Fig. 2:
only the basis of the vectorspace is changed. With
the new basis Sf and SF are still obtained from
Sy and Sz of the Fig. 2 by the same singular matrix.
The h.p.s of H.B.s Figs.1 and 2 are, therefore,
the same h.p. and differ only in the choice of basis:
from this point of view, but more generally, affine
equivalents under I, Lemma 1 differ only in the choice
of basis. But if T is singular, and S¥ )—( S¥, and
81 )—( 82, the two pairs differ in the choice of vector
space — a real difference as is suggested in this paper.

If C; and Cs do have the same vector set, then
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— because when the numbers of points N; and N:
in the unit cells of S; and S are finite, Theorem 13
is certainly applicable to the finite sets C; and C,
— the projected sets CF and CF have

C¥C¥=C3C¥ .
Since 81 and Sz have the same lattice, they have the
same lattice L (say) of c.p.s. and the same lattice L*

of projected c.p.s.T. Now it is clear that if convolution
— is taken over all space

S¥=CFL*, Sf=CrL*, S¥S*=Ci0FL*.
Hence
S¥8f=CrCHI* = CROFL = SE5F .
Because
8i81=CiCiL (18)
we can still have
l§1_§1=3/2-§2, 0/;51 # @2 . (19)
Suppose the c.p. is defined by vectors uy, us, ..., un,.

Then if (19) holds C:C; and C/’;C_’z differ from the
content of the c.p. of $18: (or S28:) in that at least

one vector x in $181 is y1 in C1C; and y: in C2Ce
where
X=Yy1+x1h + ... 4+ xuUn
=Y+ thath + ... + umin
in which the »;, u; are integers, positive, negative or
zero. This is so because convolution with L as in (18)
(taken over all space) simply adds veetors xyuy + ... +
xmUn for every set of integers »; to each vector y;

of OT@. Hence, since from (9)
C¥Cr=T(C1Cy)—
C$C¥ =T(Cs02)—
these two sets differ by at least one pair of vectors

Ay: and Ay: (where as usual A is the matrix of T):
and the difference between these is

Ayi—y2)=A(rnwm+... +VmUm)

for some set of integers v;. This is true for any X, yi,
and yz: hence,

O*C*L* C*C*L*
We therefore have the theorem:

TurorEM 15. If T exists for the periodic sets S
and S, then

T If Tis of rank 1 projecting onto a visible direction n
with a visible point A;n, L* is a set of d-functions of weight 1
at points vA;n for all integers .

ON HOMOMETRIC SETS. 11

SlSl—SzSg - S*S* S*S*

As an example of the considerations of this section
consider the 2-dimensional 5 point periodic h.p.

((0,0), (1, +0), (3, 0),

20, 23, 22, 20, 21)

((0,0), (1, 1+0), (3

20, 21, 22, 20, 23)

(3, 8), (%, §+0;

2 0), (3, 3), (3, £+0);
(20)

projected onto the line y=x. Here p=g=1 and the
required matrix is
C=y(2)

where B is defined in (3). The c¢.p. has volume 2 and
contains two unit cells. Under B the projected pair
is not

8F = ((0,0), (345, 3+0), (1+b, 1+0), (3, §),
(2+0, +0); 2, 23,22, 20,Z1)

SF = ((0, 0), (3+5, }+5),
20, 21+ 22, 20, 23)

(345, $+0);

23 2)
repeating every (1, 1) for in this case S¥S¥ = S¥S%¥:

instead it is the superposition of two such pairs with
origins separated by (3, 1)

St = 85 =((0,0), (b, b), (3+b, 1+b), (3, 3),
(3+b, 3+0), (340, §+b);
2z0, 23, 21+ 22, 220, 23, 21+ 22)

for which S}S#¥=8#8F of necessity. These 1-dimen-
sional sets revert to 2-dimensional ones when put
into a square lattice with constants (0, 1), (4, 0).

As a second example consider the 20-point quadru-
plet

81=((0, 0), (a, 0), (0, ), (a, b), (4+a, 0), (3+a, b),
(O: ?]i:+b) (as i+b) (B‘+a5 I+b) ( )? (%s b):

(0 )s (a’ %) ('€+a’ %) (3) i’+b (35’ 4+b)’
(3,0, (30, % d, G111, 1
82=((0, 0), (a 0), (0 b), (a, b), (3 +a, 0) (§+a, b),

0, 3+ ) (a,4+b) (% a, $+), (3, 0), (5, b),

0, %), ), (5+a, %), 3, §+0), (3, §+0),

(%’ O) )7 3? "2) %)) 1 1 1)

=((0, 0), (a 0), (0, b), ( b), (z;+a 0),( +a, b),

0, 1+b), (a ,4+b), (3+a, ,0), 3, ),

0, %), (@, }), (B+a, ), (3, ’~+b (3, i+b),

(3, 0), (3, 0), (% 3), (3, 4); 1 - 1)
84=((0, 0), (a, 0), (0, b), (a,b (%+a 0) (8+a, b),

0, +0), (a, $+0), (§+ ) (3, 0), (3, 0),

0, 3), (a, 3), (3+a, }), (3, 4+b), (8, §+0),

(3 0), (3,0), (3 1), (3. §); L, 1, ..., 1); @)

81 )—( 82 )—( 8z )—( Sa ()—( transitive). When c.p.s
of volume 2 containing these points are projected
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onto y=x by B of (3) they form essentially new h.s.
In 1-dimensional form repeating at intervals of
one half these are

8f=(0,a,0,a+b, s+a, L+a+b, §+b, f+a+b,
sito+d, § &40, 1, 4+a, +a, f+b, L+,
L d+b, 411, ...,0)

8¥=(0,a,b,a+b, 5+a, L+a+b, §+b, +a+b,
Hta+b & 4+, 4 1+a, d+a, L4, F+0,
L i+o & L1, . 0)

S835=(0,a,b,a+b, E+a, H+a+b, 3+b, 3 +a+b,
seta+b, &, 4+, 1, t+a, §+a, +b, L+,
L& 40,45 1,1,...,1)

S8f=0,a,b,a+b, f+a, H+a+b, 3+b, E+a+b,
Z+o+b, %, 4+b, %, 2+a, i+a, &+b, &+0,
Lo +h, 51,1, . 1)

SF )—( SF )—( 8% )—( SF ()—( transitive) and (21)
continues as a quadruplet in projection. But it does
not always follow that if Si, ..., S, constitute a
multiplet of order r, ¢.e. form an r-tuplet, that
S¥, ..., SF constitute a multiplet of the same order.
The construction of sets of the type of (21) will be
considered in part III of this series. Certain of them
have the property considered in I of being homo-
metric with other sets which can be obtained from
them by non-singular affine transformations. In
particular S1)—(S{ where S;=TS8: and T has
matrix

(22)

when

S1= ((0, 0), (a, 0), (0, @), ({+a, 0), (0, $+a), (3, 0),
©, %), (a, a), (a, }+a), (1+a, a), (}+a, +a),
(3,a), (@, 3), (1+a, §), (3, §+0a), (3, 3); LL,...,1)

81 = ((0, 0), (a, 0), (0, @), (0, }+a), (}+a, 0), (}, 0),
©, 3), (a, a), (}+a, a), (a, }+a), ($+a, ;+a),
(3, 2), (@, 4), (3, t+a), (§+a, §), (3, 3); L,1,...,1).

Since
BA=B,

SF=_8;* It is possible to construct more elaborate
examples in which multiplets of order r greater than
two are similarly reduced to multiplets of order two
and greater but still less than r. It is also possible
to offer many other examples of h.s. § with essentially
new projections S*.

5. Some generating sets of 11,

The many-one correspondence between S; )—( Sz and
8¥ )—( S¥ can be illustrated by the many sets which
under singular transformation reduce to IIs of I(8)
and I(i). It is first necessary to make explicitly a
point implicit in I, Definition 4 where distinct h.s.
are defined.
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It is known from an extension of the results of I
that the 1-dimensional pairs

{ 0,a,¢c, t+a, %, $+c¢; 20, 21, 22, 21, 20, 22)
(O’ a, ¢, %+a7 %9 %+c: 20, 21, 22, 21, R0, 22) (24)
0,a,c,a+c, t+a, }+a+c, §, +c;
20, 21, 2022, 2122, 23, 2223, 20, 2022)
0,a,¢c,a+c, $+a, +a+c, §, $+¢;
20, 21, 20%2, 2122, 23, 2223, 20, 20%2) (25)
are h.p.: it can be verified that

{(O, a, a+tc, 3, s+a—c; zo, 21, 22, 20, 21)
0,a—c, a, }, 1+a+c; 2o, 22, 21, 20, 21)

(26)

is a h.p. Yet for particular choices of coordinate and
weight parameters each of the pairs (24), (25) and (26)
reduces to IIs. The h.p. Il with N=4 is therefore
a particular example of at least three pairs with N > 4.
Indeed it is known from I that as many sets S,=
(¢ry $+¢r; 2, ;) with arbitrary ¢, and 2, can be added
to each of the h.s. in the h.p. (24) as is wished; the
new sets are h.s. and the new h.p. reduce to 74 when
all ¢, (and the parameter c=co in (24)) are zero.
The h.p. Il, with N=4 is therefore a particular
example of an infinite number of h.p. with N>4
which reduce to it when, by suitable choice of the
parameters in these h.p., points are made to coalesce.

That this is a general result follows from an obvious
theorem of the type proved in I:

TreorEM 16. If 81 )—( Sz and 8 is any set what-

soever then 15713 and 672_§ have the same weighted
vector set.
For

—_

(818)(818) = (8181)(S8) = (5282)(S3) .

S

Moreover, since § is arbitrary, STIE —( @ in
general. Indeed if S1)—( Sz in one dimension and

S=(O, C1,C2y oo oy CN=1; 20,21y « ooy ZN-l)

then
818 )—( 828

for at least some set of values of the ¢; not all zero,

N1
whilst if every ¢;=0, S is a d-function of weight 3 2;
at the point 0 and i=0

818=81; 828=82; $18=81 )—( Sa= 58 .

Thus every h.s. can be embedded in at least one
larger h.s. of which it is a degenerate example. If
the smaller h.s. is treated as an example of the larger
it then follows that the only distinct h.s. contain an
(enumerable) infinity of points and distinct periodic
h.s. contain an infinite number of points in their
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unit cell (V= cc). But for crystallographic purposest
one requires, in principle at least, the separate ex-
hibition of all particular h.s.; and although the
existence of affine equivalents and parametric families
of h.s. makes this impossible in practice it is implicit
in I, Definition 4 that, even if the h.s. § of N points
can be obtained from the h.s. 8’ of N’ points by a
suitable choice of its parameters, S is an example
of & if, and only if, N=N'. On the other hand given
N', 8’ embraces all those h.s. S with N=N' which
can be obtained from 8§’ by choice of its parameters.
It is not necessary that N1=Ns in the h.p. 81 )—( Ss:
the pair Sy )—( S, embraces all h.p. S; )—( Sz with
Ny=N{, No=N, which can be obtained from S
and 8; by choice of their parameters.

If T is singular, points in § may coalesce in T&S.
It is then trivial that 8§ and TS are distinct h.s.
even though when T is of rank r<m TS can still
be made m-dimensional. For example, the 4-point
generalization of I7; of I(8), namely:

H { (07 a, i_'i_a; 'é; 20, 22, 2, Zo)
4 =
©, a, $+a, §; 20, 22, 2, 20)

which will be the h.p. signified by II; in the future
is trivially distinct from all 5-point h.p. from which
it can be generated by projection on the y axis by
the singular matrix

(27)

0 0
C-= [0 ! } ) (28)
Amongst these 5-point sets are certainly
((0:0)’ (a+c, ) (a b) 7 %+a_c %'l'b)’
p, =] %22 , 21)
((O, O)y (%+a+c, %—*_b)’ (a’, b)> (%: %)1 (a—c, %’*‘b):
20, 21, 22, 20, Z1)
((0, O): (%—*_a) Z%'*'b), (a’ b), (21_: %)5 (%+a7 %+b);
Pot= 29, 21, 22, 20, 23)
((0,0), (3+a, }+0), (a,0), (3, %), (F+a, }+b);
20, 23, 22, 20, zl)
(0, 0), (3ta, §+0), (a, b), (0, }), (a, §+0);
Pa— 20, 23, 22, 20, 21)
((0, 0); (']2’+a: 411‘+b)5 (a’: b)7 (0> "2); (a’, %+b)>
R0y %3y %2y 20, Zl) (29)

with z=2z1, or (z1+23) in (27). The pair I1, is therefore
obtainable by the same singular transformation from
at least three distinct 2-dimensional h.p. and from
their generalizations, in the manner of Patterson
(1944), to m > 2 dimensions.

It must be recognized, however, that the demonstra-
tion that two h.p. are distinet can be difficult and
that such distinction can be rather arbitrary. In a

1 It is also mathematically inconvenient to have N =o0.
1 This pair was given by Garrido (1951) for a=4.

ON HOMOMETRIC SETS. II

later paper it will be shown that in a rather special
sense Pz and Pj are in fact affine equivalents. It will
also be shown for example that a very surprising
triplet of affine equivalents of the same type is the
triplet of periodic h.p.

((0,0), (a,b), (f+a, 55+0), (1, %), (£, %), (3, %), (5, %),
(%! 7) ( 7 ) 20, 21, 22, 20, 20, 20, 20, R0, ZO)
((0,0), (a, b), (i +a, F+b), (3, %), 3, %) (£ 3), (3, %),

(75 7)’ (79 7)7 20, 21, 22, 20y 20, 20, 20, 20, 20) (30&)
and

1%,+aa ﬁ;"‘b) (3 %), (5, %), £, %), (4% ),
20 21, 22, 20, 20, 20, 20, 20, 20)

(
) )s

((0: 0), (@, 8), fi+a, 5+0), (1, 1), 4, 8), 5, 8), 4, 9),
)

b
(3, 2), (4, §); 20, 21, 22, 20, 20, 20, 20, 20, 20)

(306)
and
((O, O), (a9 b) (14+a’, 14+b) (7, 7) (7: 7) (7; %) (%’ ?i‘),
(%, 8)s (8, 8); 20, 21, 22, 20, 20, 20, 20, 20, Z0)
((0,0), (@, ), (FF+a, f+0), 3, 4), (3, 3), (3, %), (4, %),
(3, 2), (£, £); 20, 21, 22, 20, 20, 20, Z0, 20, 20) (30c)

These pairs are Patterson generalizations (P-genera-
lizations) of the 1-dimensional h.p. IV, IT®, and IT{®
of I which are certainly distinet, but it will be shown
later -that all the P-generalizations of the [I®
(for different ¢) are affine equivalents if n=p4+2,
p prime. Another example of this unexpected affine
equivalence is the pair of h.p. (42) below for which
p=>.

As a second example of a plausible but none the
less arbitrary distinction between h.p. the periodic
pair

((0, 0), (¢, §+0), (0, b), (0,
Py = 20, 21, 22, 20, 21)
((0, 0), (¢, $+0), (0, B), (0, }), (1

20, 21, 22, 20, zl)

%)) (1—01 %'*'b);

—C, ;f+b)y
(31)

becomes [14 under the matrix (28), but it is in fact
a degenerate example of the P-generalization of the
1-dimensional periodic pair

{(0, a, 3, 34+a—c, $+a+tc; 2o, 22, 20, 21, 21)
(0) @, i"'a’—c) i"i‘(];'}'ﬁ, %5 40y &2y %1y &1y Z()) (32)

taken along =0 (and which is an affine equivalent
of the more obvious generalization along y=x) with
the x parameter a and the y parameter ¢ both zero.
The h.p. (32) is the h.p. (26) with ¢ replaced by }+-c,
and the h.p. P; is the P-generalization of (26) along
y=a with the y parameter c=%. P, and P, are there-
fore examples of the same pair.

Within the terms of the problem as set, namely
that pairs P and P’ are to be in some way distinct
and satisfy TP=TP' =1l (with an obvious notation),
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P, and P; may still be considered distinct. The same
may be said a fortiori of P; and P, for P: contains
3 weight- and 3 coordinate-parameters, whereas
P, contains 4 weight- and 2 coordinate-parameters.
In particular, there exists no more general pair P
which embraces by choice of parameters both P
and Ps and satisfies TP=1I, if T has matrix (28).
This we now prove.

We remark that P; is a 5-point h.p. which under

1 0
Lo o]
is the 5-point h.p. (26). The latter is a h.p. even
when zo=z1=2=1 and if it is in its most general
form its coordinate parameters are still most general
in this case. But it can be shown by direct calculation
that if the coordinates are as in (26) then the most
general set of weights is again as in (26). Since (26)
is a 5-point projection of the 5-point pair Py, P1 can
itself contain at most 3 weight parameters and must
be distinct (at least when TP=1Il; is to be satisfied)
from P, which contains 4.
We show now that the h.p.

{(0, a,a+c, 3, t+a—c; 1,1,1,1, 1)

0,a—c,a, %, t+a+c; 1,1,1,1, 1) (33)

has its most general set of coordinate parameters.
If a>¢>0, a+c<$, the coordinates in (33) are in
order of increasing magnitude. The two sets of
separations between adjacent points are

(a, c, é_a_c$ a—c, %_a""c):(ul’ Uz, U3, U4, Us)
(a—c, ¢, j—a, ate, F—a—c)=(uj, uy, us, uy, us) (34)

with w1 =a, uz=c, efc. The 10 separations wu;, u; satisfy

Zs‘ui =25‘u;=1 (ex)

i=1 i=1

Uy =U; + Uy, Us=U2+Us (8 (35)
Us=Ug+ Uy ; Ug="U1+ U

U+ us=u3+ Uy (y)

Uz OF Uz OF Us=u" Or Uy Or u; (0)

Equations (35) contain 10 relations between the 10
unknowns u; and u; of which 2 are redundant. For
(6) = ua="wu; or u, or ug and us=(uy Or %;) or (u; or %)
or (u; or u;) which determines u4 as the remaining ;.
Then (y) and (6) imply one relation of (x). Also from
(p) and (x)
U+ U2 =Uy —> u3+u4+u5=u1'+u2'+u;;+u5'>
whilst from (y) and (x)
Ue +Ug + Ug =1y + Uy + Uy
or
Us— Uz ="Uj ,

and from us=wu;+u; in (f)
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Up=1Up,

which is one possible relation of (J). Hence (if () is
two relations) (J) is the one relation with two alter-
natives

Ug=1u; OT Us .

The most general pair of sets satisfying the eight
independent relations (35) therefore contains two
arbitrary coordinate parameters.

Indeed (34) is a solution of (35): putting ui1=a,
ug=1u,=c¢, we find that if us=w, the u; and u; are

U;: a, ¢, a—c, 1—3a—c, a+c
u;: a—c¢, ¢, @, a+c, 1 —3a—c

which is an enantiomorphic pair; if us=wu; we obtain
(84), which is the set of separations between adjacent
points of the h.p. (33). But they are also in a form
which is quite general to all 5-point, equal weight,
1-dimensional h.p. It is hoped to show in a later
paper that, in such pairs, at least two u; are identical
with two u;. Also there must be («), one relation like
(y) and at least four relations like (f): in this case
there is also one relation like (8). Alternatively
there can be six relations like (), one like (y) and
none like (8). Thus 5-point, equal weight, 1-dimen-
sional pairs contain at most two coordinate para-
meters. It follows that the coordinates (33) are in
their most general form and that P, contains at most
three weight-parameters.

The major conclusion — that the correspondence of
S to S* is many-one — is fairly obvious however.
For at least the following become II;, under C of
(28): the 5-point pairs Pi, Ps, Ps, P4; the 4-point
P-generalization of 114

_ {((O’ O)s (aa b)’ ((1, i"f—b): (01 %); 20, 21, %, ZO)
° = ((Os 0), ((Z, b)’ (ay %+b)’ (0: %)’ 20, 21, 2, ZO) (36)

and some of its affine equivalents; a related 4-point

pair
_J« 3
P6 B {(( 3 )’ (a’ b), (12‘+(1«, %+b)7 (O, %)’ 20, %1, 2, ZO);
(37)

the P-generalization to two dimensions of (25)

01 0)’ (a7 b)’ (%+a’ i’+b)5 (O) ); 20, 21, 2, 20)
0,0

((0, 0), (a, b), (c, d), (a+c, b+d), (}+a, }+b),
(A+a+c, 1+b+4d), (3, 3), (3+¢, §+4d);
20, 21, 7072, 2122, %3, 2223, 20, Z0%2)

((0, 0), (a, b), (c, d), (a+c, b+d), (3+a, $+b),
(E+a+c, §+0+4d), (4, 3), 3+c, 3+4d);
20, 21, 2092, 2122, 23, 2223, %0, 20%2)

(38)

with d=0; the 2-dimensional P-generalizations of the
infinity of distinet pairs which can be obtained from
(24) by the addition of sets S, when d,=0 (where
dr is the y parameter corresponding to ¢, or ¢ in (24)),

eqg.
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(0, 0), (a, b), (c, d), (1+a, ;+b), (}, }),
(3+c, 3+d); 20, 2, 21, 2, 20, 21)

(0, 0), (a, d), (¢, d), (2+a, +D), (3, ),
(3+c, $+4d); 20, 2, 21, 2, 20, 21)

(39)
with d=0; the examples (i) and (ii) below

Ezxample (i): A 2-dimensional h.p. related to 7
defined in I, namely

(0, 0), (a, 0), f5+a, }+0), (G, 3), (5, 0),

) & >
— (%, %)a LR} (éT%’ %);20, 21, 225, 205 - . -, ZO)
(0, 0), (@, b), (H+a, }+5), (35 1), (& 0),
(2%3 Jf)s “s ey (;%, %); 20y %1y B2y R0y + « oy Zo) . (40)

There appears to be an example of this type for
every analogous 2-dimensional relative of IT(),
provided 7z has a factor 4. This is another example
of an enumerable infinity of distinet 2-dimensional
h.p. which project to 114

Example (ii): Two sets of the form

S1 = ((a§°), 0), @, 0), ..., (a2, 0),
(@, a), (@, a), ..., (e, a),
(@2, }+a), @D, t+a), ..., (@2, }+a),
(ag.a)’ %)s (a'ga), %)’ ) (0’543)> %), Z§0); Zgl); z§z)§ Z§3))
Sz = ((6§7, 0), (B, 0), ..., (B9, 0),
(P, a), ¢, a), ..., P, a),
&, §+a), O, §+a), ..., (&, $+a),
(b(la), %)’ (b(23)’ 3‘2 > ey (bg&)’ %) 5 z;(o); z;(l); 2;:(2); z;‘(a))
(41)

become [I; when projected onto the y axis for any
values of the a{® and b{ whatsoever, provided only
that

4 r % u
Py zgo) =3 Zi(o) =3 z§3) =3 Zi(3) s
=1 i=1 i=1 i=1

t v
P = 32®,

2 = 250,
i=1 i=1 i=1 i=1
In this example Si).( 82 8; and Se are not h.s.
(in general), yet S¥ )—( S¥: an infinity of distinct
non-homometric, 2-dimensional sets projects into I7s.
Clearly a family of non-homometric sets of this type
exists for every l-dimensional h.p. and indeed for
every r-dimensional h.p.

The examples of this section and the arguments
of this paper suggest the

Dermvirion 5. If T is singular (and S* =TS exists),
S and 8* are distinet unless S* can be obtained from
(an affine equivalent of) S by a particular choice of
coordinate parameters. S and S* are always distinct
if they contain a different number of points.

ON HOMOMETRIC SETS. II

6. A group property of h.s. obtained by
singular transformations
Under a singular transformation with matrix
% 1 25 10
c~venr(} 5[ ")
(V(29)) ¥4 10 4
a c.p. containing 29 lattice unit cells of the P-genera-
lization of IT{V

Sl = ((O’ O)’ (a’ b)’ (—llT)+a’ Tlﬁ+b)’ (%’ %)’ (%: %)9 (%) %),
%, %) 20, 21, 22, 20, 20, 20, Zo)
0,0), (a, ), ({5+a, {H+0), (3, ), (% %), (%, ),
$ % (42a)

>

(
Sz = ((
(%, %); 20, 21, 22, 20, 20, 20, Zo)

is projected onto the line 5y=2z as the h.p.

((0, 0), (5c, 20), (+5¢, §+2¢), (2, 4), (4,9, (1, %),
(3, %)a 20, 21, %2, 20, 20, 20, 20)
((0, 0), (5c, 2¢), (3+5¢, §+2¢), (2, %), (4, 9), (1, ),
(3, %), 20, 21, 22, 20, R0, 20, zo)

repeating periodically every (5,2). In a rectangular
lattice with constants 5, 2 this is an affine equivalent
of the P-generalization of 7

83 = ((0,0), (@, ), (F+a, f5+b), 3, 3), (3, 9, &, B),
(%, £); 20, 21, 22, 20, 20, 20, 20)

83=((0,0), (a4, 0), (f5+a, §+0), (3, ), (& %), (3, ),
(%, £); 20, 21, 22, 20, 20, %0, 20) (42b)

with a=56 from which it can be obtained under the
matrix
o
0 21

Now CS; is an example of S, CS; is an example
of Ss. Hence if O is the operation: singular trans-
formation by C followed by P-generalization to a
2-dimensional rectangular lattice and if O2 is O
applied twice, then

S]_ )—-( 0281; OS1 )—( 0381; 0481 = Sl .

In this way from the single h.s. S; are obtained all
four h.s. 81, Sz, S5 and S, by singular transformation.
It will become apparent from later work that, if JIT®
is P-generalized to r>1 dimensions and n=p+2,
P prime, it is possible to obtain all [IP (for different 7)
by singular transformation followed by P-generaliza-
tion. The /7{ are certainly distinct in one dimension
so that this is an example of new h.p. obtained by
singular transformations: but from another point
of view of course it raises the question of distinction
between h.p. It is plain that a cyclic group of order 4
represented by the operations O, 02, 03, O4 is as-
sociated with the 2 IT{). It appears that a group of
order n—3=p—1, if p is an odd prime, is associated
with the 4(p—1) IT¥. A better representation of this
group is afforded by transformations with non-
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singular matrices A, however, and it is hoped to
take this up in a later paper.

APPENDIX

(i) In §2 we appeal to an extension of the theorem
(¢f. e.g. Birkhoff & MacLane, 1953) that if A is real
and non-singular with transpose A’, then

A=CO,

where C=(AA’)} is real symmetric and O=C-1A
isreal orthogonal : we extend the theorem to singular A
(and hence singular C).

We define for singular A

B=A+cU, O<e<e

with for convenience det U # 0, and & the smallest
positive root of
det (A+eU)=0.
Then
lim B=A.

e—>0
Since B is non-singular
B=CO; C2=BB’; O0’'=1.
We can then prove
Q =1im O; D = lim (BB)! = (AA")}

e—>0 e—>0

exist and that
A=DQ; QQ' =1;

Then we have

D=D.

A = (AA')IO

with C=(AA’)} symmetric and O (non-singular)
orthogonal whether A is singular or not.
If 00’'=1, det O # 0 and

81 )—( 82 > 081 )—(0O8; (by I, Lemma 1) .

Since € is symmetric there exists (Birkhoff &
MacLane, 1953) a real orthogonal matrix P such that

PCP-! = diag (cy, ..
Since det P 5 0, by I, Lemma 1

81 )—( Sz > P8y )—( PSq;
P_IS]_ )—( P—ng > Sl )——( Sz.

.y Cm) -

Hence we need only consider singular transformations
of h.p. under diagonal matrices as stated in the text.

Perhaps a simpler argument is to appeal to the
theorem (Aitken, 1956) that every real m-dimensional
matrix of rank r is ‘equivalent’ to

1,;0
I = [J

where I, is the r-dimensional unit matrix: then the
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only matrices we need consider are diagonal with
diagonal elements 0 or 1. (We can also use this theorem
instead of choosing the basis of x in (ii) following
when S is an arbitrary set.)

(ii) Implicit in the argument of (i) (and indeed in
the whole context of parts I and II) is the following
lemma:

Lemma. If S(x) is a point set in the sense of (8)
above, and T, Ti, T are affine transformations such
that for any vector x

Tix= A1X +C1; Tox= A2X 4+ C2
Tx =Ax+c=AAix+Agci +Co=ToTix,
then
TS(X) = T2(T18(x)) .

If A; and Az are non-singular, and TS is inter-
preted in the sense of (6) above

To(T1S(x)) = Ta(|det A;|-18(T7x))
=|det A1 A 1S(T Ty x)=TS(x) .

The lemma is indeed true for any function S(x) in
this case.

If one at least of A; and A (say Ai) is singular
then as in § 2 (between (8) and (9))

Tlé(x—xi) = 6(x—A¢x,~—ci) = (5(X—T1Xi)
T2T1(S(X—X{) = 6(X—T2T1X¢) = T(S(x—xi);

and when S(x) has the form (8)
TS(X) = Tz(TpS(X)) .

The lemma can be extended to all integrable sets
S(x) for which the relevant integrals exist. The
extension is already proved when T: and T: are
non-singular. If T; (and A;) is singular of rank r,
choose a basis of x so that A; is completely reduced
(¢f. Weyl, 1931) to the ‘sum’ of two square matrices
in r- and (m-—r)-dimensional complementary sub-
spaces, A{? and A{™: by proper choice of basis
A" =00n-7) the (m—r)-dimensional zero matrix,
and det A{? # 0. Define

S0(x) = AS(x) = {A‘PS S(x)dx<m—r>} S(x(m-n), (43)

where x and x(m— lie in the complementary sub-
spaces:
X=X f-x(m-r)

If A; is of rank >7 and det AP # 0, AzA, is
not in general simultaneously completely reduced
with Ay but one can find a new basis of x completely
reducing AzA; to an r-dimensional sub-space:
(A2A;)S(x) is then defined analogously to (43).
A proof in two dimensions (omitted here) shows that
in terms of the basis of (43) the set (AzA;)S(x) is
exactly the set A2S0)(x). There seems to be no
difficulty in principle in extending this proof to
m>2 dimensions: its truth hinges on the fact that
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the definition (43) leaves S)(x) m-dimensional, but
it is clear that the subsequent transformation of
Sr(x) under Ag requires the transformation of an
(m—r)-dimensional J-function as in § 2. The equiv-
alence of (A1A2)S and A;i(A2S) with A; singular
should follow for the same reason.

(iii) In so far as the point sets of (8) are idealizations
of a real situation in which electron density S(x)>0
at almost all points of space, it is natural to enquire
how far the operations of convolution and affine
transformation commute for general sets S(x). If T
is non-singular and S*=TS is defined as in (6), it is
clear from the argument leading to (7) that more
generally

T(8:%) = SFS* (44)

for all integrable sets S1, Sz for which the convolution

818z exists. The following is a proof of (44) when
T is singular and S; and S: are not periodic and
have convergent integrals, that is have finite total
weights.

By a proper choice of basis in the m-dimensional
space, A of rank r<m is completely reduced to
A® 4+ Alm-1_ where Alm-1=0(m-r), Let now

g(x) = { S(x)dxm-n.
Then using (43) and the interpretation (6)
¥ = [det A0)|~1g,((AC)-1x¢)§(x(m-)
since from (8) to (9)

0(m~r)5(x(m—r)) = §(x(m-n)
Then

ON HOMOMETRIC SETS. II

S¥S¥ = (A"} d(x(m—n) .
Also

A5,
= {A(r) SS ,S’l(y)Sz(x__y)dydx(m—r)}é(x(m—rl)

= {A‘”S Si(y) S Sz(x—y)d(x—y)<"'-”dy}c5(x<’”">)

—

= {A‘f)glgg}é(x(m—'))

which proves the theorem.

The reversal of the integrations puts certain further
conditions on 8; and 8S:; e.g. sufficient conditions
would be continuity of these functions and uniform
convergence of their integrals if the range of integra-
tion is all space or all of some infinite sub-space.
These conditions obtain for any real distribution of
electron density.
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General spot-size correction for inclined incident beam: Weissenberg method. By KarHipew

LonspaLrE, University College, London W.C. 1, England
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D. C. Phillips (1954, 1956) has derived formulae giving
the reflexion spot area variations observed on upper-level
Weissenberg photographs. These apply only to the
normal-beam and equi-inclination methods. Since the
formulae involve the axial coordinate { which is depen-
dent upon the wave-length, it follows that the Phillips
correction cannot be applied to Kf spots if the incident
beam is set in the equi-inclination position for the K«
radiation. It is sometimes, however, very desirable to
make use of the intensities of the Kf spots, for example
if the Ko are too strong, if they are just outside the

limiting sphere or if they are enhanced by the Renninger
effect. It seems necessary, therefore, to give the Phillips
equations for the general case.

The nomenclature used is that of section 4-3 of the
International Tables for X-ray Crystallography (herein-
after 1.7.) Volume II (1959), which differs from that of
Phillips mainly in using ¢ for the angular coordinate
instead of w. The method consists in determining the
reflexion-spot length € (parallel to the rotation axis)
without any camera translation; and then of determining
the additional + A introduced by the movement of the



