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The theorem that  sets which have the same weighted vector set continue to do so when subjected 
to the same non-singular affine transformation is extended to singular transformations, but  it does 
not follow that  homometric sets (h.s.) necessarily remain homometric under singular transforma- 
tions although they may do so. I t  is also shown tha t  sets which are not homometric may  become 
homometric under singular transformations. The singular transformation of periodic sets offers 
special difficulties. I t  is shown that  'almost all' singular transformations of periodic sets do not 
exist. 

The (enumerable) infinity of transformations which do exist can be a source of new h.s., but  the 
recognition of distinct homometric pairs (h.p.) is usually not simple. I t  is shown that  every h.s. is 
a degenerate example of a larger h.s. and this occasions a re-examination of the definition of distinct 
h.s. An investigation is made of sets which become the 4-point pair Ha of par t  I under the same 
particular singular transformation. An argument which seems to be fairly general is used to prove 
that  two 5-point pairs with this property are distinct but  they are only two of many sets which 
transform to H a. I t  is shown tha t  an (enumerable) infinity of distinct h.s. can be reduced to/ /4 .  

I t  is suggested tha t  h.s. obtained by singular transformations cannot be considered to be examples 
of their generating sets as are h.s. obtained by non-singular transformations. 

A group property of h.s. obtained by singular transformations is touched upon. 

1. Introduction 

In  an  earlier paper  (Bullough, 1961), hereaf ter  referred 
to as I ,  i t  was shown (I, L e m m a  1) t h a t  if two periodic 
or non-periodic point  sets were homometr ic  to each 
other  t h e y  remained  homometr ic  when each was 
subjected to the  same affine t r ans fo rmat ion  

T x = A x + c  (1) 

in which A is a real  non-singular  m-dimensional  
square matr ix .  Accordingly i t  was argued t h a t  all 
homometr ic  pairs (h.p.) re la ted  one to another  by  
non-singular  t ransformat ions  should be counted as 
the  same h.p. : h.p. are then  invar ian t  under  the  full 
affine group. 

The nota t ion  of (1) for T x  means  t h a t  x, which 
is to be in te rpre ted  as an m-dimensional column 
vector,  is subjected to t r ans fo rmat ion  by  the  ma t r ix  A 
followed by  t rans la t ion  by  the vector  c:  A x  is ma t r ix  
mult ipl ication.  In  I the  nota t ion  A . x  was used to 
dist inguish ma t r ix  mult ipl icat ion f rom the operat ion 
signified by  Tx.  I t  is convenient  no longer to make  
this  dis t inct ion:  the  more usual  nota t ion  A x  for 
m a t r i x  mult ipl icat ion is adopted  and  the  t ranspose 
of A (or x) is denoted by  A '  (or x ' ) ;  ' t r ans fo rmat ion  
under  A '  means  t r ans fo rmat ion  by  T wi th  m a t r i x  A. 
The remaining no ta t ion  of I is adopted  wi thout  
fu r ther  explanat ion.  

Now i t  is known (Hosemann & Bagchi,  1954, 
Figs. 2 and 3) t h a t  sets homometr ic  in m( > 1) dimen- 
sions can remain  homometr ic  when subjected to the  
same singular t ransformat ion .  Thus if Y is a s ingular  
affine t r ans fo rmat ion  wi th  m a t r i x  

in which ~ is a non-singular  r-dimensional  square 
m a t r i x  (r < m) then,  in the  no ta t ion  of I, if $1 ) - - (  $2 
in m dimensions, i t  m a y  be t h a t  MS1 ) - - (  VS2 in 
r dimensions. More general ly if B is of r ank  r i t  m a y  
be t h a t  V S 1 ) - - (  VS2 in r dimensions. Bu t  any  
r-dimensional vector  x~=(Xl, . . . ,  Xr) can be t rea ted  

t 

as an  m-dimensional  vector  xm by adjoining m - r  
constant  components,  e.g. x'~=(xl, . . . ,  xr, 0, . . . ,  0) 
wi th  m - r  noughts  is an  m-dimensional  vector. 
Hence if B is of r ank  r, VS1 )- - (  MS2 in m dimensions. 
One question which now arises is whether  $1 and MS1 
are the  same h.s. even though V is singular.  

I n  I i t  was briefly noted t h a t  a general izat ion of 
the  1-dimensional h.p. I /4 of I (8) and  I, example 
(i) to two dimensions was 

$1=((0 ,  0), (a, b), (¼+a,  ¼+b), (½, ½); 1, 1, 1, 1) } 
Su=((0 ,  0), (a, b), ( ~ + a ,  ~+b) ,  (½, ½); 1, 1, 1, 1) (2) 

and t h a t  under  the  singular ma t r ix  

B - -  ( 3 )  

i t  became 

vsl=((0,  0), (u, u), (~+u, ¼+u), (~, ½); 1, 1, 1, 1) 
VS2=((O, 0), (u, u), (~+u, ~+u), (1, ½); 1, 1, 1, 1) 

(4) 
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which is a par t icu lar  example  of (2) with a-=b(=u).* 
Hence i t  was argued in I tha t  in the absence of other 
in format ion  S~ and VS1 should be counted as identical.  
In  this  paper  (II) s ingular  t ransformat ions  are ex- 
amined  more completely:  i t  is shown tha t  whilst  
$1 and  VS~ may be the same set they  are in general  
dist inct .  This is perhaps more consistent wi th  the 
fact  t ha t  V -1 does not  exist :  for then, as we show, 

VS1 )--(  VS2 +~ $1 )--(  $2, $1 )--(  $2 +~ VS1 )--( VS~. 

But  d is t inct ion between h.s. can be difficult  and  is 
sometimes necessari ly arbi t rary .  For example,  the 
equivalence of h.s. under  the affine group is very  
much  less s imple t han  envisaged in I:  three examples  
which show an unexpected affine equivalence are 
noted in  (29) (the pairs  P~ and P3), (30), and (42) 
below yet  these pairs are in  some sense obviously 
dist inct .  At the same t ime it  is shown (Theorem 16) 
tha t  all  h.s. are degenerate examples of larger h.s. 
and in § 5 the defini t ion of dis t inct  h.s. is re-examined 
in  the l ight  of this  theorem. 

I t  is also shown in the present  paper  (II) tha t  if 
two non-periodic sets $1 and $2 have the same 

weighted vector set in m-dimensions,  i.e. $1S1 = $2S2, 
then  they  continue to do so in r (_< m) dimensions 
under any  affine t ransformat ion  whatsoever, s ingular  

S 1 $1 = or non-singular,  i.e. if S~=TS1 ,  S~=TS2 ,  * * 

S 2 S~. for any  T and any  ma t r i x  A. The result  for 
non-singular  t ransformat ions  was proved in I (6), 
and it  was also applicable to periodic sets; but  the 
extension to singular  t ransformat ions offers diff icul ty  
on two counts. The f irst  diff iculty,  the presence in 
the result  of det A -1, which does not  exist  when 
A is s ingular ,  is more apparent  t han  real ;  the second 
diff iculty,  tha t  of the in te rpre ta t ion  of all  but  a 
re la t ively small  class of h.s. t ransformed by singular  
t ransformat ions  when those h.s. are periodic, seems 
to be fundamenta l .  I t  appears tha t  t ransformed 
periodic sets are not necessari ly meaningful  when 
they  are derived by  singular  t ransformat ions  and 
al though the result  above remains  true as a formal 
l imi t  if necessary, i t  can be interpreted only for an 
enumerable  set of s ingular  t ransformations.  On the 
other hand,  an invest igat ion of h.p. under  s ingular  
t ransformat ions  cannot be confined to the s impler  
case 0f non.peri0dic h.p. for (cf. I, and § 4 below) 
the class of periodic h.p. includes all  non-periodic h.p. 
together  with pairs which are homometric  only when 
inf ini te  and periodic. 

A fur ther  indicat ion of the mot ivat ion for the 
content of the present paper  is the evident  t ru th  
of the following theorem: 

* The considerations of § 4 show that this result is to some 
extent fortuitous (cf. the example (20) below where under 8 
single projected lattice unit cells do not have the same vector 
set). 

ON H O M O M E T R I C  SETS .  I I  

T~EOREM 17: If  $1S1---$2S2 and an  affine t rans-  
formation T non-singular or s ingular  exists (in the 
sense of Theorem 14 below in the second case) such 
tha t  TS~ )--( TS~, then  S~ )--( S~.. 

For if T is non-singular,  then  if S* = TS1, S~" = TS2 

S~' )--(  $2" --> T-1S1 * )--( T-~S * (by I, L e m m a  1) 
o r  

$1 )--( $2. 
If T is singular  

S i S 1  = $239. --> S1 --  $2,  S1 ~ $2 o r  S i  ) - - (  $2 . 

But  

The theorem asserts tha t  if two sets have the same 
weighted vector set in m > 1 dimensions and can be 
shown to project to a h.p. in a smaller  number  of 
dimensions they  are necessarily homometr ic  in  
m dimensions.  This theorem is invaluable  in the 
building up of m-dimensional  h.p. from 1-dimensional 
h.p. as will  be shown in par t  I I I  of this  series; for 
a l though i t  is often easy to generate m-dimensional  
pairs with the same vector sets i t  is not always easy 
to show tha t  such pairs consti tute a h.p. This diff icul ty  
was a l ready evident  in the arguments  of the earlier 
paper  (I). 

One only of the conditions of Theorem 17 is not 

sufficient and its converse is not  true" S'1 )--( S * ~  $1S1 

=$2S2 (and a fortiori +-~ $1 )--( $2 as noted above) 
as is shown in Example  (ii) of § 5; and $1 )--(  $2 

( ~ $181 = $2S~ ~ S *  ~*  * - *  = $2 $2 by Theorems 13 and  
15 below) ~ S* )--(  S*. 

2. Vector  s e t s  u n d e r  l i n e a r  
t r a n s f o r m a t i o n s  

If S is a point  set as in I, SS is i ts vector set. In  
order to prove Lemma  1 of I i t  was shown (I(6)) 
tha t  if A is non-singular  and S is a point  set of 1V m- 
dimensional  ~-functions of weights z0, . . . ,  zN-1, then  
if T S  = S*,  

T(SS) = ldet AI-1S *S* .  (I(6)) 

This result  is sufficient to prove I, Lemma 1 when 

det A ~ 0 but becomes meanlng]ess when T is singular 
and det A = 0 .  But  the extension of I(6) to this  
lat ter  case is possible because the presence of det A 
in I(6) is in  fact  illusory. Equat ion  I(6) as proved 
is ac tual ly  applicable to any  funct ion S(x) what-  

soever (provided S is integrable and S S  exists). 
We shall  f irst  show tha t  det A ( ¢  0) does not  appear  

in I(6) if T(SS) and S* are properly normalized and  
S is any  non-periodic function, we then  prove I(6) 
when det A = 0  for any  properly normalized non- 
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periodic set, S, of &funct ions;  in § 3 and § 4 we then  
extend the proof to periodic sets bu t  this  requires 
an  invest igat ion of the meaning of S * = T S  when 
S is periodic and  T singular. 

In  the proof of I(6) S and T S  were assumed to be 
such tha t  to every point  x in S corresponds T x  in TS. 
Hence 

TS(x)  = S(T-*x) .  (5) 

If  S has a certain total  weight Z, 

Z = f S(x)dT 

where, since S is assumed non-periodic, the integra- 
t ion is over al l  space. The weight of T S  is therefore 

I s(T = last A, I = ,d t A , Z  

If this  total  weight is to be unchanged in the  trans- 
format ion induced by  T we mus t  use not  (5) but  

T S =  [det AI-IS(T-tx) . (6) 

We can now complete the proof of I(6)" we give i t  
in  ful l  since I(6) contains a small  error. We have 

T(SN) -- ldet A[ -~ S ( y ) S ( y - T - t x ) d ' c  

= [det A I-21 S ( T - ~ y ) S ( T - ~ y -  T- tx )  d'c, 

but  i t  was not noted in  I(6) tha t  

T - l y -  T - t x  = A - t ( y -  c) - A - t ( x  - c) 

= A - t ( y -  x) = T - l (y  - x -}- c) . 
Hence, if 

S* = T S =  Idet A-1 IS(T- tx ) ,  

then  in the nota t ion  of I, Definit ion 1 

T(SS)  = S ' S *  + c (7a) 
and  

T(SS)  -- S ' S *  (7b) 

changing the equal i ty  in I(6) to ident i ty .  
The argument  fails when T -1 does not exist. 

Suppose for the moment  tha t  det A ¢ 0. The ma t r ix  
A is not  symmet r ic  in  general, but  (cf. Appendix)  
we can always write 

A =  CO 

where C is a symmetr ic  m-dimensional  square mat r ix  
and  O is m-dimensional  orthogonal (det O =  + 1). 
The d imensional i ty  of C O  is then  ½ m ( m + l ) +  
½ m ( m - 1 ) = m  2 equal  to tha t  of A. The mat r ix  O 
is non-singular  and  s imply  introduces a combinat ion 
of rotat ions and  reflexions which can be ignored 
because (I, Lemma  1) if, and  only if, St )--( $9. then  

OS1 )--( OS~..* Because C is real symmet r ic  i t  has 
real  eigen values and  m a y  be diagonal ized by  ap- 
propriate choice of the coordinate axes. If we now 
consider a s ingular  t ransformat ion  as the l imi t  of a 
non-singular  one, the only singular  matr ices  are 
diagonal ones. This is considered more completely 
in (i) of the Appendix.  

As in I, suppose tha t  S is a set of N m-dimensional  
&functions:  

_hr--1 

S(x) = Z z i ~ ( x - x d .  (8) 
5 = 0  

When  ¢ is non-singular  diagonal  

also 

C:=diag  (o, . . . ,  Cm); Cr ~ O, 1 _< r _< m; 

m 

~ ( x -  xd = I I  d(Xr-- X<r °) 
r = l  

where 

and  so 

t x ' =  (xt, . . . ,  x~), x i =  (zi~), . . . ,  x~)), 

C d ( x - x d  = Idet C1-1 l~I a(CrlXr--X (i)) 
r = l  

r=l 

But  from the defini t ion of the &funct ion it  follows 
tha t  

d{Cr 1 (Xr -- CrX(r i)) } = Crd (Xr -  CrX(r i)) 
and 

m 

¢d(X--Xl)  ---- 1-I ~(Xr--CrX(ri)) • 
r = l  

This shows that ,  when S is of the form (8) and T S  
is defined as in  (6), S and  T S  are such tha t  a point  
of weight  z, at  x, in S becomes a point  of the same 
weight at  Tx~ in T S  as was original ly required in I. 
This will  always be the  meaning of T S  in the future 
whether  T is non-singular  or not. When  T -1 exists  
this  in terpre ta t ion is precisely equivalent  to (6). 
When  any  cr, say cs, tends  to zero, C d ( x - x  d is an  
m-d imens iona l  d- funct ion  located on the point  
( o x ~ O , . . . ,  0 , . . . ,  CmX~)) with 0 in the sth place. 
I t  follows tha t  

T(SS) = S ' S *  + c - S ' S *  (9} 

whether C is non-singular  or not. Since A is a rb i t r a ry  
the a rgument  is in no way restricted to the orthogonalt 
'projections'  result ing when c8=0. The number ,  2g, 
of points in the set S can be as large as one pleases, 
but  S is for the moment  assumed non-periodic. 

The result  (9) is almost  t r ivial  since if T is to 
have the proper ty  of changing x~ in S to Txi  leaving 

* OS, in which 0 is a matrix is used to mean the set TS 
in which T is such that T x - O x ,  i.e. is a homogeneous affine 
transformation. 

t An orthogonal basis is assumed here but this is of course 
not necessary (see the discussion in (ii) and (iii) of the Appen- 
dix). 
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z, unchanged,  x, and x~ become "l'x~ and "i'xj leaving 
z, and zj unchanged, whilst  ( x t -  xj) becomes T ( x , -  xj) 
leaving z , z j  unchanged,  and  this  is t rue even when 
T is of rank  r < m (restricting Tx, ,  Tx j  and T ( x , - x j )  
to an r-dimensional  sub-space of the m-dimensional  
space). I ts  essential  s impl ic i ty  should not obscure its 
importance-  we have, in fact 

THEOREM 13. If $1 and  $2 are not periodic and 

S 1 S t  = S 2 S 2 ,  and if S* = TS1, S* = TS2 where T is 
a n y  real affine t ransformat ion whatsoever, then  

$1 S1 = $2 $2 • 

The equal i ty  follows from (9) because 

• - - ,  , - - ,  
St St + c = $2 $2 + c .  

The theorem is equal ly  true when A has complex 
elements bu t  this  does ra ther  less t han  extend the 
theorem to 2m dimensions. An incomplete proof of 
(9) is also given in  (iii) of the Appendix  for sets much  
more general  t han  (8). The theorem is much  less 
obvious here since it  appears to require the par t icular  
in terpre ta t ion  (43) of AS.  

Theorem 13 is applicable to periodic sets when 
T is non-singular.  When  T -1 exists I(7) and I, Lemma  1 
follow. Whether  T -t exists or not  we always have 
S t  --- $2  -+ S *  - S * ,  $1  ~ S~  -+ S *  ,-~ S * ,  but  when 
T -x does exist, i t  cannot be inferred from Theorem 13 
tha t  St )--(  $2 ~ S* )--( S*. Moreover the converse 
of Theorem 13 does not necessari ly hold- when T -1 
does not exist  

St St = S~*$2-* +* $IS1 = $2S~. 

Hence i t  is possible to obta in  h.p. by  singular  trans- 
formations of pairs which are not  homometric.  
Indeed,  when T -1 does not exist  S*, S* imply  l i t t le  
about  St, S~.: so much so indeed tha t  we can have 
$8 # $1, $4 # S~, S* S*, * * = S 4 = S~_, $1" )--(  S~ whether  
or not  ei ther or both of Sa )--( $4, St )--(  $2 obtain, 
a n d  the  correspondence of St )--(  $2 to $1" )--(  S~ 
can at  least  be many-one .  I t  follows tha t  when 
T is s ingular  St and  $1" = T S 1  cannot be the same 
h.s. in  general. Examples  of these various relat ions 
appear  in  § 3 and  § 4. 

jecting S down the m axis. If  S is periodic, an in f in i ty  
of points exist  with coordinates @1 . . . .  , x~- l ,  a) 
each with different a, and T S  contains a set of points  
with inf ini te  weights lying in the  plane x ~ = 0 .  
But  i t  is clearly sufficient to project only those 
points  lying between x ~ = 0  and x ~ =  1 onto x m = 0 ,  
since the remaining  par t  of the lat t ice only superposes 
copies of the projected set. The obvious way  to 
submit  a periodic lat t ice to a s ingular  t ransformat ion 
is therefore to submi t  only a fundamenta l  port ion of 
i t  to the t ransformation.  The par t icular  fundamenta l  
port ion is de termined by  the par t icular  t ransformation.  

We consider only orthogonal projections- these do 
not necessarily include all  possible projections since 
al though the  lat t ice m a y  be sheared in such a way  
as to make  the subsequent  project ion orthogonal the  
result ing lat t ice is no longer a pr imi t ive  cubic lattice. 
However, there seems to be no difference in pr inciple  
between orthogonal and non-orthogonal projections. 

We can project orthogonally in  an  a rb i t r a ry  fashion 
from m to m - 1  dimensions but  the result  m a y  not  
be meaningful .  For we can project orthogonally in  
an a rb i t r a ry  direction n (with transpose n ' =  
(nl, . . . ,  n~)) in m dimensions onto an ( m - 1 )  dimen- 
sional hyperplane  normal  to n. A hyperplane  passing 
through a lat t ice point  at  the origin is n ' r  = 0. A vector 
~n passing through the origin mus t  ei ther  intersect  
no more lat t ice points  or i t  mus t  intersect  an in f in i ty  
of them. For if i t  intersects one for ~=~tl (say), then  
),in is a latt ice t ransla t ion and there are lat t ice points  
at v~ln for any  positive or negat ive  integer v. If  ~ln 
is a lat t ice vector and there is no value of ~ lying in  
0<~<l~ t l J  such tha t  ~n is a la t t ice vector then,  
extending a usage of (H.W., 29),* the point  wi th  
position vector ~tln will  be called a 'visible point ' :  
any  direction n which defines a 'visible point '  Xn for 
some ~t will be called a 'visible direction' .  

If  ~tln is a visible point  then  i t  is sufficient to project 
down n onto n ' r = 0  all  points which lie between the  
planes n ' r  = 0, n ' r  =21, sat isfying (for 21 > 0) 0_<n'r < 21. 
Combined with this  condition the ma t r ix  for the 
projection mus t  be such tha t  r becomes s where 
n' s  = 0 and  

r + / ~ n = s .  

Hence/~ = - n ' r  and 

s = r - n ( n ' r ) =  ( I n -  Mm)r 

3. T r a n s f o r m a t i o n s  of pe r i od i c  sets .  

The diff icul ty associated wi th  the t ransformat ion of 
periodic sets arises because such sets necessari ly 
contain an inf ini te  number  of points. An obvious 
example  is t ha t  occurring when A is the singular 
ma t r ix  

~ O  

where ¢x is non-singular and (m-1) -d imens iona l ,  pro- 

where I m is the m-dimensional  uni t  ma t r ix  and  M m 
is an m-dimensional  square ma t r ix  with components  

(M)tj = n , n j  . (10) 

The required ma t r ix  is therefore 

A ~ = I ~ - M ~  

* As in I, (tt.W., k) refers to page k of ]~ardy & Wright 
(1954). 
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and  provided visible directions can always be found* 
Am, Am-l ,  . . . ,  A ~ - r  will  perform any  projection 
from m to r dimensions.  The projected set is clearly 
periodic in ( m - 1 )  dimensions since any  lat t ice vector 
u in  S becomes 

( 1 ~ -  Mm)U=V (say) 

in  T S  and  vu becomes vv and  the sets are therefore 
periodic in r dimensions.  

If  n is not a vis ible  direction, i.e. 2n intersects no 
lat t ice points  other t han  the origin, there are at  most 
N points  on the  l ine 2n;  for if 2n is not  a la t t ice 
vector i t  cannot intersect  more than  one equivalent  
of any  of the N points  in the  uni t  cell. Hence no 
dif f icul ty  arises from the superposit ion of an infini te  
number  of points  in the projection and it is sufficient 
to project all  points  ly ing  on the line 

r = s + 2 n  

onto the  point  s by  the  ma t r i x  ( i r a -Mm) .  The pro- 
jected set necessari ly remains  periodic but  the dif- 
f i cu l ty  is now tha t  the uni t  of repeat  has a zero 
hyperarea  in the plane n ' r = 0 .  This is so because 
no two cells of the lat t ice superpose on this  plane 
yet  the total  number  of cells of the lat t ice must  be 
preserved: the projected cells necessari ly overlap and, 
since the number  of points  of the lat t ice is enumerable  
in  each of m l inear ly  independent  directions whils t  
tha t  of the projected set is enumerable  in  only m - 1  
l inear ly  independent  directions, there are other la t t ice 
points  of the projected set a rb i t ra r i ly  close to any  one 
la t t ice  point  of the projected set. Projected sets of 
this  type  obviously require a special in terpre ta t ion  
and m a y  be meaningful  only as a formal l imit .  
A fortiori successive projections of sets of this  type  
m a y  not be meaningful  and, when n is not  a visible 
direction,  i t  is not obvious tha t  projections from 
m to r <  m - 1  dimensions are sti l l  possible. However, 
i t  m a y  be possible to project d i rect ly  as in the fol- 
lowing. 

We consider the impor tan t  case of orthogonal 
projection from m to 1 dimensions by a ma t r i x  of 
rank  1. If  T has such a ma t r i x  i t  t ransforms every 
point  lying in the hyperplane  

n ' r  = p 

into the point  pn.  The required ma t r i x  is therefore 
the ma t r ix  Mm: for convenience we henceforth drop 
the subscript.  If  the origin is a lat t ice point  then  
ei ther  n ' r = 0  contains no other lat t ice points or i t  
contains an in f in i ty  of them. In  the first  case it  is 
sufficient to project every point  in n ' r = p  onto pn.  

* It is shown be]ow that if n is visible n ' r = 0  contains 
lattice points repeating in (m--1) linearly independent direc- 
tions: this is also true only if n is visible. Therefore successive 
projections from m to r dimensions are always possible if 
every n is visible but may not be possible if n at any stage 
is not visible. 

In  the second case n ' r = 0  will contain in general  
a periodic set of lat t ice points  repeating along up to 
m - 1  l inear ly  independent  directions. For if 2u~ is a 
lat t ice point  in this  plane so is v2ul, and if #u2 is a 
la t t ice point  (u2 # ~ui) so is v12u~+v2#u~, and so on. 
If n ' r - - 0  contains a periodic set repeat ing in up to 
( m - i )  l inear ly  independent  directions, then  it  is 
sufficient to project exact ly  one of each inequivalent  
point  (with m a x i m u m  number  N) lying in n ' r = p  
onto pn  by  the ma t r i x  M. 

The line 2n through the origin will intersect  ei ther  
none or an inf in i ty  of other lat t ice points. Suppose 
n is visible wi th  a visible point  21n. Under  T with 
ma t r ix /q l  S becomes T S  periodic with one period 1211n. 
But  in fact the period is _< ]21 In.* For if the hyperplane  
n ' r  = 0 contains a lat t ice repeat ing along m - 1  
l inear ly  independent  directions it  contains a cell of 
f ini te  hyperarea  A such tha t  ]),~]A contains an 
integral  number  of lat t ice uni t  cells. Hence the period 
of the projected set ly ing along n is 1/A. :For it  is 
clear that ,  since every lat t ice point  is equivalent  to 
every other, any  la t t ice  point  projected onto the 
line 2n mus t  be equivalent  to any  other and if 21n 
contains [21]A projected lat t ice points the set on 2n 
repeats  every 1/A. 

The area A of the uni t  cell in  the hyperplane  cart 
be found as follows. Since 21n is visible, i t  is a la t t ice  
point  and  is such tha t  for 0 < ),< I21[, ),n is not  a 
la t t ice point. If  

2 ~ n ' =  (p, q, . . . ,  w) 

then, by  the f irst  property,  the m components: 
p, q, . . . ,  w are integers which, by  the second proper ty ,  
have no common factor. The posit ive in tegers  
]p[, [q[, . . . ,  ]w I are therefore re la t ive ly  pr ime but  not  
necessari ly re la t ive ly  pr ime in pairs (H.W., 48). 
If the hyperplane  n ' r = 0  contains lat t ice points 
repeat ing in  ( m - l )  l inear ly  independent  directions 
with uni t  cell of area A, this  cell is the base of a 'uni t  
cell' of a volume J21]A which contains an  integral  
number  of la t t ice points  and must  therefore be an 
integer. Since 

[2~] = ( p 2 + q 2 + . . .  +w2)½ 

and J21[A is an integer for every choice of the integers 
p, q . . . .  , w we mus t  have 

A = ( p e + q 2 + . . .  +w2)½f(p, q, . . . ,  w) (11) 

where f (p ,  q, . . . ,  w) is a homogeneous polynomial  in 
p, q, . . . ,  w with integral  coefficients. 

To determine the funct ion f we use an a rgument  
specifically for four dimensions (m=4)  which can 
obviously be generalized to m > 4 .  We require three 
l inear ly  independent  lat t ice vectors with components 
x, y, z, v necessarily integral  sat isfying 

p x + q y + r z + s v = O  (12) 

* i.e. the length of the period in the direction n is ~ 121]. 



300 ON H O M O M E T R I C  SETS .  I I  

in  which the components of (p, q, r, s ) =  2,n '  are also 
integers.  A set is 

u;=(s ,  0, 0, - p ) ,  u~--(r, 0, - p ,  0), u~=(q, - p ,  0, 0) 
(13) 

and this  is true for all  integral  p, q, r, s. Incidenta l ly ,  
this  and  i ts  general izat ion demonstra te  t ha t  if 21n 
is a visible point  and  n a visible direction the points 
of the hyperplane  perpendicular  to n necessarily 
repeat  in  m - 1  l inear ly  independent  directions (see 
footnote on p. 299). The cell defined by  the vectors 
(13) is a uni t  of repeat  in the hyperplane  (12) but  i t  
is not necessari ly the smallest  such uni t :  in par t icular ,  

t 

if e.g. p and s have a common factor d, ul should 
be replaced by 

u ; = ( s / d ,  O, O, - p / d )  . 

The hyperarea  of the cell defined by  (13) is therefore 
an integral  mul t ip le  of (11). 

The area of the base of the cell defined by  the 
vectors ul,  u2 is 

[ u ~ u ~ - ( u ; u 2 ) e ] ½ = p ( p 2 + s 2 + r 2 )  ½. (14) 

A perpendicular  to ul  and u~ lying in the plane (12) 
is the vector 

(p, o~, r, s) ; o~ = - (pC + r z + se)/q . 

This  is of length  

l =  (pe + r2 + s2 + a2 ) ½ = (p~ + r2 + s2 ) ½ 

x (p~+q2+r2+s2)½/q .  

The projection of u~ in this direction is 

( p q -  ccp)/1 = p(p2 + q2 + r e + s2)½ (p2 + r e + s2)-½ 

and the hyperarea  of the cell is 

p~(p2 + q~ + r ~ + s2 ) ½ . (15) 

I t  is clear tha t  for m = 5  one can consider vectors 

u;= (t, o, o, o, -p ) ,  u~= (8, o, o, - p ,  o), 
u~=(~, o, - p ,  o, o), u~=(q, - p ,  o, o, o),  

instead of (13), and (15)* replaces (14). The argument  
then  continues as from (14) and the hyperarea  is 

p3(p2 + q2 + r e + se + t2)½, 

and in general the hyper~rea is 

pm-~(p~ + q 2 +  . . . +w2)½. (16) 

Since (16) is an integral  mul t iple  of (11) and 
f ( p ,  q, . . . ,  w) is homogeneous in p, q . . . .  , w it follows 
tha t  the hyperarea  A of the uni t  cell in the plane 
n ' r = 0  is 

A = ( p ~ + q ~ + . . .  +w2)  ½. 

In  par t icular  when m =  2, 

* W i t h  r, s, t r ep l ac ing  p, r, s r e spec t ive ly .  

A = (p2 + q2)½ 

which is known from simpler  considerations. 
When  n is a visible direct ion [p[, [ql, . . . ,  Iw] are 

re la t ively  prime. When  n is not visible we consider 
this  as the l imi t  of IPl, Iql, . . . ,  ]wt tending  to co in  
such a way tha t  they  remain  re la t ive ly  prime,  i.e. 
so tha t  at  least  one ratio e.g. IPl/Jql is i r rat ional .  
In  this  case A tends to o0 and lat t ice points in n ' r  = 0 
repeat  in at  most m - 2  l inear ly  independent  direc- 
tions. At the same t ime the length 1/A  of the un i t  
of repeat of the set projected on the direction n tends  
t o  z e r o .  

The magni tude  of the uni t  of repeat  of the projected 
set remains  equal  to un i ty  if instead of the mat r ix  M 
of (10) we use 

( p 2 + q 2 + . . .  +w2)½M. (17) 

This ma t r ix  exists  for every set of integers 
(p, q , . . . ,  w). Hence we can project periodic sets 
orthogonally onto all  visible directions. The mat r ix  
does not exist  when IPl, Iq[, - . - ,  I w] tend to ~ and  
the projection is not possible when n is not  a vis ible  
direction. On the other hand,  when n is not  a vis ible  
direction, we can project onto directions m which 
approach n as closely as we please. Nevertheless,  
since the number  of lat t ice points  is enumerable  the 
number  of visible points is enumerable  and the ma t r ix  
(17) does not exist  for 'a lmost  all '  directions n. 
The ma t r ix  M of (10) exists for all  n but  the  un i t  
cell of the projected set has 'a lmost  a lways '  nothing 
but  formal  significance - -  as far as the  theory is 
developed here. We shall  therefore say tha t  a projec- 
t ion onto the direction n exists only when (17) exists. 
Analogous matr ices  which m a y  exist  or not  will  also 
occur in the singular  t ransformat ions  of m-dimensional  
sets to r( < m) dimensions.  

We have proved the theorem: 

THEOREM 14. Orthogonal projections of r ank  1 of 
periodic sets S onto directions n exist  if, and only if, 
n is visible.  

We have also proved the 

COROLLARY: 'Almost  al l '  such projections do not 
exist.  

Provided the projection T onto a direction n exists 
we can extend Theorem 13 to the case of periodic 
sets. Theorem 13 is valid for sets 81 and S~ containing 
a rb i t r a ry  numbers  of points  _h,~l and N2 but  even 
when the project ion is in terpre ted in the sense of the 
discussion above this  does not mean  the extension 
is immediate .  Certainly if $1 and  $2 are periodic the 
impl icat ion tha t  N1 and Ne are enumerab ly  inf ini te  
now causes no diff icul ty per se: the real d i f f icul ty  
in the direct  appeal  to Theorem 13 is t ha t  when two 
infini te  periodic sets are convoluted the resul tant  
periodic set is meaningful  only when 'factored'  once 
by  the periodic set of lat t ice points. Suppose C1 is 
the content of the uni t  cell of $1 and L is i ts lat t ice.  
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Then as in § 4 below (but there with a different 

interpretation of C1) S~ = C1L, but S~S1 is C~C1L and 

not CIC~LL. Since L = L ,  S~S1 is 'factored' once by L. 

This is necessary because LL is a periodic lattice of 
&functions in which each (t-function has infinite 

weight: L is, therefore, a 'renormalized' LL  and 
Theorem 13 could be applicable only if the re- 
normalization could be carried through. 

When the projection T exists (so that  n is visible) 
both the superposition of points and the renormaliza- 
tion are avoided by projecting only finite parts of 
$1 and $2 (which we call their 'cells for projection' 
in §4): this means that  the two finite sets to be 
projected are not necessarily homometric - -  for it 
was noted in I and § 1 here, that  certain sets are 
homometrie only when their unit cells lie in 
(m-dimensional) infinite lattices. Paradoxically this 
second difficulty is avoided when n is not visible 
provided only finite superpositions of points occur in 
the projection of the whole lattice; and this is certainly 
so in the extreme case when the plane normal to n 
contains no more than one equivalent of each point, 
i.e. when every ratio p/q, p/r, q/r, etc. is irrational. 

But now although TS1, TS2 and T(S1S1)=T(S2S2) 
can be said to exist as everywhere 'dense' (H.W. 121) 
projections of all the points of each set, still the 
convolution of TS1 and TS2 could be taken only by 
factoring out one convolution of the projected set of 
lattice points. Moreover since TS~ and TS2 contain 
(i-functions located on lattice and other points 
arbitrarily close to other (i-functions on lattice and 
other points, both the process of convolution and the 
process of integration itself is now undefined. The 
sense in which Theorem 13 remains true for periodic 
lattices when the projecting matrix 'does not exist' 
(in particular in the sense that  (17) does not exist 
except for visible n when the rank is 1) is thus of 
considerable mathematical interest but requires an 
extension of interpretation that  we shall not at tempt 
in the present paper. When (17) exists, however, 
the same result which we prove as Theorem 15 below 
is of interest because the unit cells of S overlap in 
the projection, forming new unit cells, and the 
projected set S* can be very different from the set S. 
I-Ienee the possibility exists of obtaining essentially 
new h.s. in r dimensions by the projection of h.s. 
in m( > r) dimensions. 

4. T r a n s f o r m a t i o n s  of periodic  
vector sets  

We assume that  the situation for transformations T 
of a rank r (< m) is strictly analogous to the situation 
considered in detail above for transformations of 
rank 1. If the transformation exists, hypcrarcas of 
magnitude A of which one has lattice points at its 

corners are projected onto each point of a second 
hyperarea of magnitude A' also with lattice points 
at its corners, and the two areas with lattice points 
at their corners define a cell (for orthogonal projection 
of volume AA') in the m-dimensional periodic set S 
which we can call a cell for projection (c.p.). If 

SiS1 = S~S~, S~ and $2 must have a common lattice 
which as usual we choose to be primitive cubic with 
unit lattice constant. The c.p. of S~ is then identical 

with that  of S~ and it is also the c.p. of S~S~ and S~$2. 
If $1 and $2 have the same weighted vector set 

it does not necessarily follow that the content Cx and Ce 
of the c.p.s, of $1 and S~ have the same vector set. 
Suppose first they have. 

The simplest case of this occurs when the contents 
of the unit cells of $1 and $2 have the same weighted 
vector set. In this case the contents of the unit cells 
can be abstracted from their lattices and have the 
same weighted vector set when projected in any 
direction whatsoever according to Theorem 13. They 
may then be inserted in a new periodic lattice in the 
projected space and will still have the same weighted 
vector set. 

An example is that  of Hosemann & Bagchi (1954). 
Their Fig. 1 contains the non-periodic h.p. 

$ 1 = ( ( - 1 ,  0), ( - 1 ,  -1 ) ,  (0, -2 ) ,  (1, -1 ) ,  (1, 1), (2, 1); 
1,1,1,1,1,1) 

$ 2 = ( ( - 1 ,  0), (0, --1), (0, 1), (1, --1), (2, 1), (2, 2); 
1, 1, 1, 1, 1, 1) 

in an orthogonal system of axes. Under the singular 
matrix 

Eo 0] 
this h.p. becomes their Fig. 3 namely 

S*=( - -4 ,  --3, 2, 5, 3, 7; I, 1, 1, 1, 1, 1) 

$2"=( -4 ,  1 , - 1 , 5 , 7 , 6 ;  1 , 1 , 1 , 1 , 1 , 1 ) .  

$1" and $2" have the same 1-dimensional non- 
periodic vector set according to Theorem 13, and in 
fact they constitute a h.p. 

It  is interesting to observe that, from one point 
of view, $1 and $2 are unchanged in H.B.'s Fig. 2: 
only the basis of the vectorspace is changed. With 
the new basis $1" and $2" are still obtained from 
$1 and $2 of the Fig. 2 by the same singular matrix. 
The h.p.s of H.B.'s Figs. 1 and 2 are, therefore, 
the same h.p. and differ only in the choice of basis: 
from this point of view, but more generally, affine 
equivalents under I, Lemma 1 differ only in the choice 
of basis. But if T is singular, and Sl* )--( S*, and 
$1 )--( $2, the two pairs differ in the choice of vector 
space - -  a real difference as is suggested in this paper. 

If C1 and C2 do have the same vector set, then 
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because when the numbers  of points N~ and N2 
in the uni t  cells of St and $9 are finite, Theorem 13 
is certainly applicable to the finite sets Cx and C2 
- -  the projected sets C~' and C* have 

C1 C1 - C2 C2 • 

Since $1 and S~. have the same lattice, they have the 
same latt ice L (say) of c.p.s, and the same latt ice L* 
of projected c.p.s.~. Now it is clear tha t  if convolution 
~- is t aken  over all space 

S~=C*~ L*, S*=C*2L*, S*~ S?=C~C*I L*. 

Hence 
. - - .  - -  _ 

$1 $1 C*C*L*=f '*P*T*-  *-* 
: " z 2  " " 2  " ~  - -  $ 2  k'~2 • 

:Because 

$IS1 = CtC1L , (18) 
we can still  have 

$1S1= S~,2, C1Ct # C2C2 . (19) 

Suppose the c.p. is defined by vectors u~, uz, . . . ,  u~.  

Then if (19) holds C~C~ and C2C~ differ from the 

conten~ of the c.p. of S~S~ (or S~$2) in tha t  a t  least 

one vector x in StS~ is y~ in C~C~ and y2 in C2C~ 
where 

x = y~ + u~u~ + . . .  + ~4mUm 
= y~ + # r u t  + . . .  + / U , n U m  

in which the u~, #~ are integers, positive, negative or 
zero. This is so because convolution with L as in (18) 
(taken over all space) simply adds vectors ~u~ + . . .  + 
u ~ u ~  for every set of integers ~ to each vector y~ 

of C~C~. Hence, since from (9) 

Cx Cx = T(C~C.) - c 

• * 
C 2 C~. = T ( C 2 C 2 )  --  a 

these two sets differ by at  least one pair of vectors 
Ay~ and Ay2 (where as usual A is the matr ix  of T)" 
and the difference between these is 

A(y~-y~.)  = A(v~u~ + . . .  +vmu~) 

for some set of integers v~. This is true for any x, y~, 
and y2" hence, 

C*C*L* ~*( ,*r . ,  --~ "-"2 x"" 2 " ~  • 

We therefore have the theorem" 

Tm~ORE~ 15. If T exists for the periodic sets S~ 
and S~, then  

I f  T is of r a n k  1 p ro jec t ing  on to  a visible d i rec t ion  n 
wi th  a visible po in t  21n , L* is a set  of d-funct ions of weight  1 
a t  poin ts  v2 tn  for  all in tegers  v. 
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$I S 'q*'~* - ~*~* ~i --'-- $2 2 --> ~Jl "Jl -- ~2 ~2 • 

As an example of the considerations of this section 
consider the 2-dimensional 5 point periodic h.p. 

((0, 0), (¼, ~+b) ,  (½, b), (½, ½), (~, ~ + b ;  
Z0, Z3~ Z2, Z0~ Zl) 

((0, 0), (¼, ¼+b), (½, b), (½, ½), (~, ~+b) ;  
z0, z~, z2, z0, z3) (20) 

projected onto the line y=x .  Here p = q = l  and the 
required matr ix  is 

c = v ( 2 ) s  

where B is defined in (3). The c.p. has volume 2 and 
contains two unit  cells. Under  B the  projected pair  
is not  

S* ---- ((0, 0), (½+b, ½+b), (¼+b, ¼+b), (½, ½), 
( ~ + b ,  ~ + b ) ;  z0, z3, z~, z0, z~) 

S* = ((0, 0), (¼+b, ¼+b), (½, ½), (½+b, ½+b); 
Z0, Z l + Z 2 ,  Z0, Z3) 

. - - .  . - - .  repeating every (1, 1) for in this ease $1 $1 # $2 $2 : 
instead it  is the superposition of two such pairs with 
origins separated by (½, ½) 

S~* - $2" - ((0, 0), (b, b), (¼+b, ¼+b), (½, ½), 
(½+b, ½+b), (-~+b, ~+b) ;  
2z0, z3, zl +z~, 2z0, zs, zl +z2) 

for which .t,¢*,~*- . ~ * , ~ * . 2  - ~2 -~ of necessity. These 1-dimen- 
sional sets revert  to 2-dimensional ones when put  
into a square latt ice with constants  (0, ½), (½, 0). 

As a second example consider the 20-point quadru- 
plet  

$1=((0,  0), (a, 0), (0, b), (a, b), (~+a ,  0), ( i + a ,  b), 
(0, ¼+b), (a, ¼+b), ( i + a ,  ~+b) ,  (½, 0), (½, b), 
(0, ½), (a, ½), ( i + a ,  ½), (½, ¼+b), (§, ¼+b), 
(3, 0), (~-, b), (½, ½), (~-, ½); 1, 1, . . . ,  1) 

$2--((0, 0), (a, 0), (0, b), (a, b), ( i+a,  0), (~-+a, b), 
(0, ~+b), (a, ~+b), (i-t-a, ~+b), (½, 0), (½, b), 
(0, ~2-), (a, ½), (~+a, ½), (½, ~+b), (-~, -~+b), 
(3, 0), (~-, b), (½, ½), (-~-, ½); 1, 1, . . . ,  1) 

Sa-- ((0, 0), (a, 0), (0, b), (a, b), (~+a ,  0), (~+a ,  b), 

(0, ~+b) ,  (a, ~+b) ,  (~-+a, ~+b) ,  (1, 0), (½, b), 
(0, ½), (a, ½), (~+a ,  ½), (½, ¼+b), (~-, ¼+b), 
(3, 0), (~, b), (½, ½), (3, ½); 1, 1 . . . .  , 1 )  

S4=((0,  0), (a, 0), (0, b), (a, b), (~}+a, 0), (-~+a, b), 
(0, ~+b) ,  (a, ~+b) ,  (-~-+a, ~+b) ,  (½, 0), (½, b), 
(0, ½), (a, ½), (~+a ,  ½), (½, ~+b) ,  (3, 4a+b), 
(3, 0), (3, b), (½, ½), (3, ½); 1, 1, . . . ,  1); (21) 

St )--(  $2 )--(  $8 )--(  $4 ( ) - - ( t rans i t ive ) .  When c.p.s 
of volume 2 containing these points are projected 
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onto y = x  by B of (3) they form essentially new h.s. 
In 1-dimensional form repeating at  intervals of 
one half these are 

S*=(0 ,  a, b, a+b, ~ + a ,  l +a+b,  -~-+b, ~-+a+b,  
_ _  1 ~ + b ,  11 5 +a+b,  -~, -~+b, ¼, ~+a, -~+a, ~+b,  24 

~, ~, 31+5, ~; l, l, . . . ,  l) 
S*=(0 ,  a, b, a+b, ~ + a ,  ~ + a + b ,  ] + b ,  ~ + a + b ,  

~ + a + b ,  ~, 16+5, ¼, ¼+a, ½+a, 1 + 5 ,  ~+b ,  
½ + b , ~ ; 1  1, 1) ½~ 12~ ~ • • • 

S*=(O, a, b, a+b, ~ + a ,  ~ + a + b ,  1-+b, ls+a+b , 
~ + a + b ,  {, J6-+b, ¼, ¼+a, {-+a, ~ + b ,  11 ~ + b ,  
1 ~, 5 1 ~+b,  ~ ;  1, 1, . . . ,  1) 

S*=(O, a, b, a+b,  -~--t-a, 5 +a+b,  ~--t-b, ~--i-aWb, 
~ + a + b ,  ~, {+b,  I, ¼+a, {+a ,  ~+b ,  ~+b ,  
½, ~2, ½+b, ~;  1, 1 . . . .  , 1); (22) 

S* )--( S* )--( S~' )--( S* ( ) - - ( t r a n s i t i v e )  and (21) 
continues as a quadruplet in projection. But it  does 
not always follow tha t  if S ~ , . . . ,  Sr constitute a 
multiplet  of order r, i.e. form an r - tup le t ,  tha t  
S*, . . . ,  S* constitute a multiplet  of the same order. 
The construction of sets of the type of (21) will be 
considered in part  I I I  of this series. Certain of them 
have the property considered in I of being homo- 
metric with other sets which can be obtained from 
them by non-singular affine transformations. In 
part icular  $1 ) - - (S~ where S~=TS1 and T has 
matr ix  

°l 011 
w h e n  

$1 -- ((0, 0), (a, 0), (0, a), (¼+a, 0), (0, ~+a) ,  (½, 0), 
(0, ½), (a, a), (a, ~+a) ,  (¼+a, a), (¼+a, ~+a) ,  

(½, a), (a, ½), (¼+a, ½), (½, ~+a), (½, ½); 1 ,1 , . . . , 1 )  
S~' ---- ((0, 0), (a, 0), (0, a), (0, ¼+a), (~+a,  0), (½, 0), 

(0, ½), (a, a), (~+a,  a), (a, ¼+a), (~+a,  ¼+a), 

(½, a), (a, ½), (½, ¼+a), (~+a, ½), (½, ½); 1 ,1 , . . . ,1 ) .  
Since 

BA=B, 

S * =  S~*. I t  is possible to construct more elaborate 
examples in which multiplets of order r greater than  
two are similarly reduced to multiplets of order two 
and greater but  still less than r. I t  is also possible 
to offer many other examples of h.s. S with essentially 
new projections S*. 

5. S o m e  l~enerating sets  of II 4 

The many-one correspondence between St )--( $2 and 
$1" )--( S~' can be i l lustrated by the many sets which 
under singular transformation reduce to //4 of I(8) 
and I(i). I t  is first necessary to make explicitly a 
point implicit in I, Definition 4 where distinct h.s. 
are defined. 

I t  is known from an extension of the results of I 
tha t  the 1-dimensional pairs 

(0, a, c, ¼ + a, ½, ½ + c; z0, zl, Ze, zt, z0, Ze) 
(0, a, c, ~ +a ,  ½, ½ +c;  z0, zt, z2, zl, z0, z2) 

(0, a, c, a+c,  ~+a, ¼+a+c, ½, ½+c; 

ZO~ Zl~ ZoZ2, ZIZ2~ Z3, Z2Z3~ ZO, Z o Z 2 )  

(0, a, c, a+c, ~+a, -~+a+c, ½, ½+c; 

Zo~ Zl~ ZOZ2~ Z1Z2, Z3~ Z2Z3, Zo~ Z0Z2)  

(24) 

(25) 

are h.p." it can be verified tha t  

(0, a, a-t-c, ½, ½-t-a--c; z0, zl, Ze, z0, zl) 
(0, a--c, a, ½, l +a+c;  Zo, z~, zt, Zo, zt) (26) 

is a h.p. Yet for particular choices of coordinate and 
weight parameters each of the pairs (24), (25) and (26) 
reduces to //4. The h.p. Ha with /V=4 is therefore 
a particular example of at least three pairs with 2V > 4. 
Indeed it  is known from I tha t  as many sets St= 
(cr, {-+ Cr ; Zr, z~) with arbi t rary  Cr and Zr can be added 
to each of the h.s. in the h.p. (24) as is wished; the 
new sets are h.s. and the new h.p. reduce t o / / 4  when 
all Cr (and the parameter  c=co in (24)) are zero. 
The h.p. //4 with ~ = 4  is therefore a particular 
example of an infinite number of h.p. with / ¢ > 4  
which reduce to it when, by suitable choice of the 
parameters in these h.p., points are made to coalesce. 

That  this is a general result follows from an obvious 
theorem of the type  proved in I:  

THEOREM 16. If $1 )--( S~ and S is any set what- 

soever then S1S and $2S have the same weighted 
vector set. 

For 

(& ~)( $1 z)  = ( $1 $ 1 ) ( s s )  = ( $2~2)( s ~). 

Moreover, since S is arbitrary,  S1S )--( $2S ill 
general. Indeed if $1 )--( $2 in one dimension and 

S =  (0, c~, c2, . . . ,  cN-~; zo, zl, . . . ,  z~,_~) 
then 

& S )--( $2S 

for at  least some set of values of the c~ not all zero, 
N--1 

whilst if every c~ = 0, S is a ~-function of weight • zi 
at the point 0 and i=0 

S t S =  S~ ; $2S = $2; S~ S = S~ )--( $2 = $2S.  

Thus every h.s. can be embedded in at  least one 
larger h.s. of which it  is a degenerate example. If 
the smaller h.s. is t reated as an example of the larger 
it then follows tha t  the only distinct h.s. contain an 
(enumerable) infinity of points and distinct periodic 
h.s. contain an infinite number of points in their 
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unit  cell ( N =  ~).  But  for crystallographic purpose@ 
one requires, in principle at least, the separate ex- 
hibition of all particular h.s.; and although the 
existence of affine equivalents and parametric families 
of h.s. makes this impossible in practice it is implicit 
in I, Definition 4 that,  even if the h.s. S of N points 
can be obtained from the h.s. S' of ~V' points by a 
suitable choice of its parameters, S is an example 
of S' if, and only if, N = N'. On the other hand given 
N', S' embraces all those h.s. S with N = N '  which 
can be obtained from S' by choice of its parameters. 
I t  is not necessary that  ~ = N~. in the h.p. S~ )~ (  Se: 
the pair S~' ) ~ (  S~ embraces all h.p. S~ )~ (  Se with 
N~=N~, N~=N~ which can be obtained from S,' 
and S~ by choice of their parameters. 

I f  T is singular, points in S may coalesce in TS. 
I t  is then trivial that  S and TS  are distinct h.s. 
even though when T is of rank r < m  TS  can still 
be made m-dimensional. For example, the 4-point 
generalization of //4 of I(8), namely: 

(0, a, ¼+a,  ½; zo, z~, z, zo) 
Ha---- (0, a, ~+a ,  ½; Zo, Z2, Z, zo) (27) 

which will be the h.p. signified by //4 in the future 
is trivially distinct from all 5-point h.p. from which 
it can be generated by projection on the y axis by 
the singular matrix 

o 
1 1' (28) 

Amongst these 5-point sets are certainly 

[ ((0, 0), (a+e, ¼+b), (a,b), (½, ½), ( ½ + a - e ,  ¼+b); 
=~' Zo, zl, z~., z0, z~) 

P~ [((O,O),(½+a+c,~+b),(a,b),(½,½),(a-c,~:+b); 

[ ZO, Z1, Z2, ZO, Zl) 

[((0, 0), (~+a,  ~+b), (a, b), (½, ½), (~+a,  ~+b) ;  
' zo, z~, z~, zo, za) 

P~'$ = |((0, 0), (¼+a, I+5) ,  (a, b), (½, ½), (~+a,  I + 5 ) ;  
I ( Zo, Z3, z2, Zo, Zl) 

[((0, 0), (½+a, ~+b), (a, b), (0, ½), (a, ~+b);  
=~' Zo, z~, z~, Zo, z~) Pa 

|((0, 0), (½+a, ¼+b), (a, b), (0, ½), (a, i + b ) ;  
" ( zo, z~, za, zo, z~) (29) 

with z=2z~, or (z~ +za) in (27). The pa i r / / 4  is therefore 
obtainable by the same singular transformation from 
at least three distinct 2-dimensional h.p. and from 
their generalizations, in the manner of Patterson 
(1944), to m >  2 dimensions. 

I t  must  be recognized, however, that  the demonstra- 
tion that  two h.p. are distinct can be difficult and 
that  such distinction can be rather arbitrary. In a 

I t  is also mathematical ly  inconvenient to have N = ~ .  
This pair was given by Garrido (1951) for a =  ½. 

later paper it will be shown that  in a rather special 
sense P2 and P3 are in fact affine equivalents. I t  will 
also be shown for example that  a very surprising 
triplet of affine equivalents of the same type is the 
triplet of periodic h.p. 

((0, 0), (a, b), ( ~ + a ,  ~+b) ,  (}, }), (~, ~), (~, ~), (I, ~), 
(~, ~), (~, ~); zo, ~ ,  z~, zo, zo, zo, ~o, zo, ~o) 

((0, 0), (a, b), (~ + a, ~a ~_ b~ ~ -  ,, (~, ~), (~, ~) (~, -~), (~, D, 
(~, ~), (~, ~); zo, Zl, z2, Zo, zo, Zo, zo, Zo, zo) (30a) 

and 

((O, 0), (a, b), ( ~ + a ,  ~+b) ,  (}, ~), (~-, -~), (~, -~), (I, ~), 
(~, ~), (~, ~); ~o, ~ ,  ~ ,  ~o, ~o, ~o, ~o, ~o, ~o) 

((0, 0), (a, b), ,~n +a ,  ~+n b), (}, ~), (~, ~-), (~, ~), (4, 4), 

(~, -~), (~, ~); zo, zl, ze, zo, zo, zo, zo, zo, zo) (30b) 

and 

((o, o), (a, b), ( ~ + a ,  ~ + b ) ,  (~, ~), (~, ~), (~, g), (I, ~), 
(~, ~), (~, ~); z0, ~1, z~, ~o, ~0, zo, ~o, zo, zo) 

((0, 0), (~, b), ( ~ + ~ ,  ~ + b ) ,  (}, ~), (~, ~), (~, ~), (~, ~), 
(~-, ~), (~, ~); z0, z~, z2, Zo, Zo, Zo, zo, zo, Zo) (30c) 

These pairs are Patterson generalizations (P-genera- 
lizations) of the 1-dimensional h .p . / /9  o), / /9 (2), and/-/9 (3) 
of I which are certainly distinct, but it will be shown 
later t h a t  all the P-generalizations of the /-/~i) 
(for different i) are affine equivalents if n = p + 2 ,  
p prime. Another example of this unexpected affine 
equivalence is the pair of h.p. (42) below for which 
p--5.  

As a second example of a plausible but none the 
less arbitrary distinction between h.p. the periodic 
pair 

((0, 0), (c, ~+b), (0, b), (0, ½), ( l - c ,  ~+b);  
P4 = Zo, z~, Z2, Zo, Zl) 

((0, 0), (c, ¼+b), (0, b), (0, ½), ( l - c ,  I + 5 ) ;  
zo, zl, z2, zo, zl) (31) 

becomes Ha under the matrix (28), but  it is in fact 
a degenerate example of the P-generalization of the 
1-dimensional periodic pair 

(0, a, ½, ~ + a - c ,  ~ + a + c ;  zo, z2, zo, z~, zl) 
(0, a, ~ + a - c ,  ~ - a ~ ,  ~; ~0, z2, zl, Zl, z0) ( ~ )  

taken along x = 0  (and which is an affine equivalent 
of the more obvious generalization along y=x) with 
the x parameter a and the y parameter c both zero. 
The h.p. (32) is the h.p. (26) with c replaced by ~+c,  
and the h.p. P1 is the P-generalization of (26) along 
y = x with the y parameter c = I. P1 and P4 are there- 
fore examples of the same pair. 

Within the terms of the problem as set, namely 
that  pairs P and P '  are to be in some way distinct 
and satisfy T P  = T P ' = / / 4  (with an obvious notation), 
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P4 and P~ may still be considered distinct. The same 
may  be said a fortiori of P1 and P2 for P~ contains 
:3 weight- and 3 coordinate-parameters, whereas 
P2 contains 4 weight- and 2 coordinate-parameters. 
In particular, there exists no more general pair P 
which embraces by choice of parameters both P~ 
and P~ and satisfies T P = / / a  if T has matr ix (28). 
This we now prove. 

We remark tha t  P~ is a 5-point h.p. which under 

1 0 
• [ 0  0 ]  

is the 5-point h.p. (26). The lat ter  is a h.p. even 
when z 0 = z t = z 2 = l  and if i t  is in its most general 
form its coordinate parameters are still most general 
in this ease. But  it can be shown by direct calculation 
tha t  if the coordinates are as in (26) then the most 
general set of weights is again as in (26). Since (26) 
is a 5-point projection of the 5-point pair P1, P~ can 
itself contain at most 3 weight parameters and must 
be distinct (at least when T P  = / / 4  is to be satisfied) 
:from P~. which contains 4. 

We show now tha t  the h.p. 

(0, a, a+c, ½, ½ + a - c ;  1, 1, 1, 1, 1) 
(0, a - c ,  a, ½, ½ + a + c ;  1, 1, 1, 1, 1) (33) 

has its most general set of coordinate parameters. 
:If a > c > 0, a + c < 1_, the coordinates in (33) are in 
~)rder of increasing magnitude. The two sets of 
separations between adjacent points are 

,(a, c, ½--a--c,  a--c,  ½--a-t-c)=(ul,  us, u3, U4, U5) 
,(a--c, C, ½--a, a+c ,  ½--a- -c )=(u; ,  u2, u.~, u~, u~) (34) 

with ul = a, us = c, etc. The 10 separations u~, u~ satisfy 

5 5 

~Y,u~ = 2 u ~ = l  (~) 
i = 1  i = 1  

t t .  v 

ul = ul + u~, u3 = u~ + u3 (#) 
u~=u~+u~; u~=u~+u2 

v p 
ul + us=u3 + u4 (7) 

t u2 or u3 or u4=u '  or u~ or u 5 (5) 

(35) 

Equations (35) contain 10 relations between the 10 
unknowns u~ and u' i of which 2 are redundant.  For 

v ! t t t 
(5) "-> u2=ui  or u 2 or u~ and u~=(u 2 or us) or (u 5 or u£) 

t or (u~ or u2) which determines u4 as the remaining u~. 
Then (7) and (5) imply one relation of (~). Also from 
(fl) and (a) 

t ! v 
Ul--~ U 2 = ' l l  4 ----> U3 .~  U4..~- U5--__ Ul. .~ U2..~ U3.-~ Ug , 

whilst from (Y) and (a) 
t t t 

us + u3 + u4 = u~ + u 2 + u 5 
o r  

U5 - -  U2 "~ U3 , 

and from us=u~+u~ in (fl) 

i 
U 2 ~ U  2 , 

which is one possible relation of (5). Hence (if (a) is 
two relations) (5) is the one relation with two alter- 
natives 

t t 
ua----ul or u 5 . 

The most general pair of sets satisfying the eight 
independent relations (35) therefore contains two 
arbi t rary  coordinate parameters. 

Indeed (34) is a solution of (35): put t ing u1=a,  
, ! t 

u~.=u2=c, we find tha t  if us=u1 the u~ and u i are 

ui: a, c, a - c ,  1 - 3 a - c ,  a + c  

u'i: a - c ,  c, a, a+c ,  1 - 3 3 - c  

which is an enantiomorphic pair;  if ua=u~ we obtain 
(34), which is the set of separations between adjacent 
points of the h.p. (33). But  they are also in a form 
which is quite general to all 5-point, equal weight, 
1-dimensional h.p. I t  is hoped to show in a later 
paper that ,  in such pairs, at  least two ui are identical 

p 
with two u i. Also there must  be (a), one relation like 
(7) and at least four relations like (fl): in this case 
there is also one relation like (5). Alternatively 
there can be six relations like (fl), one like (7) and 
none like (5). Thus 5-point, equal weight, 1-dimen- 
sional pairs contain at  most two coordinate para- 
meters. I t  follows tha t  the coordinates (33) are in 
their most general form and tha t  P1 contains at  most 
three weight-parameters. 

The major conclusion - -  tha t  the correspondence of 
S to S* is m a n y - o n e -  is fairly obvious however. 
For at least the following become //4 under {2 of 
(28): the 5-point pairs P1, P2, P3, P4; the 4-point 
P-generalization o f / / 4  

((O, 0), (a, b), (a, ¼+b),  (0, ½); zo, z~, z, zo) 
P5 ] ((0, 0), (a, b), (a, ~+b),  (0, ½); zo, zl, z, zo) (36) 

and some of its affine equivalents; a related 4-point 
pair 
p~ = { ((0, 0), (a, b), (½+a, ¼+b), (0, ½); z0, zl, z, z0) 

((0, 0), (a, b), (½+a, ~+b),  (0, ½); z0, zl, z, z0); 
(37) 

the P-generalization to two dimensions of (25) 

((0, O), (a, b), (c, d), (a+c, b+d) ,  (¼+a, ¼+b), 
(¼+a+c,  ¼+b+d) ,  (½, ½), (½+c, ½+d); 

P7 = Zo, z1, ZoZ2, z1z2~ z3~ z2z3, Zo, Z o Z 2 )  

((0, 0), (a, b), (c, d), (a+c, b+d),  (~+a, ~+b), 
( ~ + a + c ,  ~ + b + d ) ,  (½, ½), (½+c, a-+d); 

Zo, zl, ZoZs, zlzg., z3, zszs, zo, zoze) (38) 

with d =  0i the 2-dimensional P-generalizations of the 
inf ini ty  of distinct pairs which can be obtained from 
(24) by the addition of sets Sr when dr=O (where 
dr is the y parameter corresponding to Cr or c in (24)), 
e.g. 
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(0, 0), (a, b), (c, d), (l-t-a, ¼+b), (½, ½), 
(½ + c ,  ½ + d); zo, z, z~, z, zo, z~) 

(o, o), (a, b), (c, d), ( ~ + a ,  ~ + b ) ,  (½, ½), 
(½+c,  ½+d);  zo, z, z~, z, zo, z~) (39) 

with d =  0; the  examples (i) and (ii) below 

Example (i): A 2-dimensional h.p. related to H ~  ) 
defined in I, namely  

((0, 0), (a, b), ~o+a, ¼+b), (~, ½), @o, 0), 
(~o, ½) . . . .  , (~, ½); ~o, ~ ,  ~2, ~o . . . .  , ~o) 

(0, 0), (a, b), s~ ( ~ + a ,  ~+b) ,  (~, ½), @o, 0), 
(~o, ½), - - - ,  (~, ½); ~o, z~, z~, zo . . . .  , zo). (40) 

There appears to be an example of this type for 
every analogous 2-dimensional relative of H ~  
provided n has a factor 4. This is another  example 
of an enumerable infinity of dist inct  2-dimensional 
h.p. which project t o / / 4  

Example (ii): Two sets of the form 

[ S1 ---- ((a?), 0), (a?), 0), . . . ,  (a(r °), 0), 
I (a (1), a), (a(21), a), . . . ,  (a~ 1), a), 

(al 9), ¼+a),  (a(~ 2), ¼+a) . . . . .  (al 2), ~+a ) ,  

, (al a), ½), (a(a), ½), [a (a) !~. z(O) • z(1). z~2) • . . , , ~ , . , , , , , , , ,  ;z!+) 

] S~ ------ ((bt °), 0), (b(2 °), 0) . . . .  , (b(f), 0), 
(bl 1), a), (5(2 ~), a), . . . ,  (b~, ~), a), 
(b(~ ~), ~ + a ) ,  (b~ ~), a a ~2) a ~ +  ) . . . .  , (b~,, ~ + a ) ,  

[ (bl a), ½), (b(~ a), ½ ) , . . . ,  (b(ua,), ½); z',(°); z~(1); z~(2); Z'i(3)) 

(4~) 

become /-/4 when projected onto the y axis for any 
values of the a~) and b~ ~) whatsoever,  provided only 
tha t  

t1" r" . ~  "~' 
z~o> = 2 :  z'~ (°) = ~7 > = 2 :  z'~ (~> , 

i= l  i=1 i=1 i=1 

3 3" t t ' 
(1) -_ z ~ = 2 / 2 ) ;  2 :  z?) 2 :  z~ (~> . 

i=l  i=l  i=l  i=l  

In  this example $1 )+(  $2, $1 and S~ are not  h.s. 
(in general), yet  S* )--(  S*" an infinity of dist inct  
non-homometric,  2-dimensional sets projects i n t o / / 4 .  
Clearly a family of non-homometric  sets of this type 
exists for every I-dimensional h.p. and indeed for 
every r-dimensional h.p. 

The examples of this section and the arguments  
of this paper  suggest the 

])]~-ITI051 5. If T is singular (and S * =  T S  exists), 
S and S* are dist inct  unless S* can be obtained from 
(an affine equivalent  of) S by a part icular  choice of 
coordinate parameters.  S and S* are always dist inct  
if they  contain a different number  of points. 

6. A group  proper ty  of h.s. o b t a i n e d  by 
s ingu lar  t r a n s f o r m a t i o n s  

Under a singular t ransformation with matr ix  

C =(/)<2.~,_,  = 
I0 10 4 

a c.p. containing 29 lattice unit  cells of the P-genera-  
lization of H i  ') 

S1 -= ((0, 0), (a, b), ( l + a ,  ~ + b ) ,  (~, ~), (~, ~), ~- (~,3 ~), 

(~, ~); zo, zl, z~, ~o, ~o, ~o, zo) 
$2 -- ((0, 0), (a, b), (~-ka,  9 + b ) ,  (t, ~), (~, ~), (~, ~), 

(~, ~); zo, Zl, z2, Zo, Zo, zo, zo) (42a) 

is projected onto the line 5y=2x as the h.p. 

((0, 0), (5c, 2c), (-~+5c, ~+2c) (2, ~), (4, s), (1, 2 , ~), 
(3, 6 . -5), ZO, Zl, Z2, ZO, ZO, ZO, ZO) 

((0, 0), (5c, 2c) (-23- + 5c, ~ + 2c) (2, • , , -~), (4, -5), (1, ]-), 
(3, 6 -5), Z0, Zl, Z2, Z0, Z0, Z0, Z0) 

repeat ing periodically every (5, 2). In  a rectangular  
latt ice with constants 5, 2 this is an affine equivalent  
of the P-generalizat ion of //~2) 

Sa -- ((0, 0), (a, b), ( ~ + a ,  ~o+b), (-~, ~), (~, e ~), (~, ~), 
(~, ~);  Z0, Z1, Z2, Z0, Z0, Z0, Z0) 

~4 ---~ ((0, 0),  (G, b), @o+a, ~o+b), ( I ,  ~), (§, 2 ~), (L ~), 
(~, ~); Zo, zl, z2, zo, Zo, Zo, Zo) (42b) 

with a=b from which it can be obtained under  the 
matr ix  

5 0 
[ 0 2 1  " 

Now CS8 is an example of $2, CS2 is an example 
of $4. Hence if O is the operation: singular trans- 
formation by 12 followed by P-generalizat ion to a 
2-dimensional rectangular  latt ice and if O ~ is O 
applied twice, then  

In  this way from the single h.s. $1 are obtained all 
four h.s. S~, S% Sa and $4 by singular t ransformation.  
I t  will become apparent  from la ter  work that ,  i f / / ~ )  
is P-generMized to r > l  dimensions and n=p+2,  
p prime, i t  is possible to obtain all Hn + (for different i) 
by singular t ransformation followed by P-generaliza- 
tion. The H(n 0 are certainly dist inct  in one dimension 
so tha t  this is an example of new h.p. obtained by 
singular t ransformations:  but  from another  point  
of view of course it raises the question of distinction 
between h.p. I t  is plain tha t  a cyclic group of order 4 
represented by the operations O, O 2, O 3, 0 4 is as- 
sociated with the 2 I1(~ O. I t  appears tha t  a group of 
order n - 3  = p - 1 ,  if p is an odd prime, is associated 
with the ½(p-1)  /-/<.. n/). A bet ter  representat ion of this 
group is afforded by t ransformations with non- 
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aingular matrices A, however, and it is hoped to 
take this up in a later paper. 

APPENDIX 

,(i) In § 2 we appeal to an extension of the theorem 
(cf. e.g. Birkhoff & MaeLane, 1953) that  if A is real 
and non-singular with transpose A', then 

A=CO, 

where C=(AA')½ is real symmetric and O=C-IA 
is real orthogonal: we extend the theorem to singular A 
(and hence singular C). 

We define for singular A 

B = A + s U ,  0 < e < s ~  

with for convenience det U # 0, and st the smallest 
positive root of 

det ( A + s U ) = 0 .  
Then 

lim B = A .  
~ - - ~ 0  

Since B is non-singular 

B=CO;  C2=BB'; O O ' = l .  

We can then prove 

O = l i m O ;  D = l i m ( B B ' ) ½  = (AA')½ 
e---> 0 e---> 0 

exist and that  

A =  D Q ;  Q Q ' =  l; D = D'. 

Then we have 
A = (AA')½0 

with C=(AA')½ symmetric and O (non-singular) 
orthogonal whether A is singular or not. 

If O O ' = 1 ,  det O # 0 and 

S~ )--( $2 -+ OSx )--( OS~ (by I, Lemma 1). 

Since C is symmetric there exists (Birkhoff & 
MacLane, 1953) a real orthogonal matrix P such that  

PCP -1 = diag (cl, . . . ,  c~).  

Since det P ¢ 0, by I, Lemma 1 

S~ )--( S~. ,-, PS~ )--( PS2; 
P-~& ) - - (  P-~& ~ & )--( &. 

Hence we need only consider singular transformations 
of h.p. under diagonal matrices as stated in the text. 

Perhaps a simpler argument is to appeal to the 
theorem (Aitken, 1956) that  every real m-dimensional 
matrix of rank r is 'equivalent' to 

Lolo] 

where Ir is the r-dimensional unit matrix: then the 

only matrices we need consider are diagonal with 
diagonal elements 0 or 1. (We can also use this theorem 
instead of choosing the basis of x in (ii) following 
when S is an arbitrary set.) 

(ii) Implicit in the argument of (i) (and indeed in 
the whole context of parts I and II) is the following 
lemma: 

LEMMA. If S(x) is a point set in the sense of (8) 
above, and T, T1, T2 are affine transformations such 
that  for any vector x 

Tlx = Alx + cl ; T2x = A2x + c2 
Tx = Ax + c = A g A l x  + A2c~ + c2 = T2T~x,  

then 
TS(x) = T2(TIS(x)). 

If A1 and A2 are non-singular, and TS is inter- 
preted in the sense of (6) above 

T2(T1S(x)) = T2([det A~I-~S(TFIx)) 

= [det A1A2I-1S(TF1T~-lx) = TS(x) .  

The lemma is indeed true for any  function S(x) in 
this case. 

If one at least of A1 and Ae (say A1) is singular 
then as in § 2 (between (8) and (9)) 

T16(x-x i )  = 6 ( x - A ~ x ~ - c 0  = ~(x-Tlx~)  
T2TI~(x-x~) = 6(x-T2Tlx~) = T~(x-x~) ;  

and when S(x) has the form (8) 

TS(x) = T2(T1S(x)). 

The lemma can be extended to all integrable sets 
S(x) for which the relevant integrals exist. The 
extension is already proved when T1 and T2 are 
non-singular. If T1 (and A1) is singular of rank r, 
choose a basis of x so that  A1 is completely reduced 
(cf. Weyl, 1931) to the 'sum' of two square matrices 
in r- and (m-r)-dimensional complementary sub- 
spaces, A~') and A(~ m-r)" by proper choice of basis 
A(m-r)=0(m-r), the (m-r)-dimensional zero matrix, 
and det A~ ~) # 0. Define 

where x(~) and x(~-r) lie in the complementary sub- 
s p a c e s  : 

X - -  X ( r )  + X ( m - r )  . 

If A2 is of rank > r  and detA(2 O¢:0, A2AI is 
not in general simultaneously completely reduced 
with At but one can find a new basis of x completely 
reducing A2A1 to an r-dimensional sub-space" 
(A2A1)S(x) is then defined analogously to (43). 
A proof in two dimensions (omitted here) shows that  
in terms of the basis of (43) the set (A2AI)S(x) is 
exactly the set A2S(r)(x). There seems to be no 
difficulty in principle in extending this proof to 
m > 2 dimensions" its t ruth hinges on the fact that  
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the  definit ion (43) leaves S(r)(x) m-dimensional,  but  
i t  is clear t h a t  the  subsequent  t rans format ion  of 
S(r)(x) under  A2 requires the  t rans format ion  of an 
( m - r ) - d i m e n s i o n a l  (%function as in § 2. The equiv- 
alence of (AiA~)S and AI(AgS) with Ai  singular 
should follow for the  same reason. 

(iii) I n  so far  as the  point  sets of (8) are idealizations 
of a real  s i tuat ion in which electron densi ty  S ( x ) >  0 
a t  a lmost  all points  of space, i t  is na tu ra l  to enquire 
how far  the  operat ions of convolution and affine 
t r ans fo rma t ion  commute  for general  sets S(x). I f  T 
is non-singular  and  S* = T S  is defined as in (6), it is 
clear f rom the a rgument  leading to (7) t ha t  more 
genera l ly  

T(SiS2) - Si $2 (44) 

for all integrable sets S~, S~ for which the convolution 

SiS9 exists. The following is a proof of (44) when 
T is singular and Si and S~ are not  periodic and 
have convergent integrals,  t h a t  is have finite to ta l  
weights. 

By  a proper  choice of basis in the  m-dimensional 
space, A of r ank  r < m  is completely reduced to 
A(r)TA(m-r) ,  where A(m-r)=0(~-~).  Let  now 

g(x(~)) = I S(x)dx(~-~). 

Then using (43) and the  in terpre ta t ion  (6) 

Si*= [det A(r)[-lgl((~(r))-lx(r))5(x(m-r)), 

since from (8) to (9) 

O(m-r)~(x(m-r) ) ~. ~ ( x ( m - r ) )  . 

Then 

&'~l t'-~2 = {A(r)glg2}~(x(m-r)) • 
Also 

ASiS~ 

: { , ( r ,  Si ~ l ( y ) S 2 ( x - y ) d y d x ( m - r ' }  ~(x(m-r,) 

= 1"(" f i .,) 

which proves the  theorem. 
The reversal  of the integrat ions puts  certain fu r the r  

conditions on S~ and  $2; e.g. sufficient conditions 
would be cont inui ty  of these functions and  uniform 
convergence of their  integrals  if the range of integra-  
t ion is all space or all of some ildinite sub-space. 
These conditions obtain  for any  real dis t r ibut ion of 
electron density.  
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D. C. Phillips (1954, 1956) has derived formulae giving 
the reflexion spot area variations observed on upper-level 
Weissenberg photographs. These apply only to the 
normal-beam and equi-inclination methods. Since the 
formulae involve the axial coordinate $ which is depen- 
dent upon the wave-length, it follows that  the Phillips 
correction cannot be applied to Kfl spots if the incident 
beam is set in the equi-inclination position for the K~ 
radiation. I t  is sometimes, however, very desirable to 
make use of the intensities of the Kfl spots, for example 
if the Ka are too strong, if they are just outside the 

limiting sphere or if they are enhanced by the Renninger 
effect. I t  seems necessary, therefore, to give the Phillips 
equations for the general case. 

The nomenclature used is that  of section 4.3 of the 
International Tables for X-ray CrystaUography (herein- 
after I .T.)  Volume I I  (1959), which differs from that  of 
Phillips mainly in using ~ for the angular coordinate 
instead of co. The method consists in determining the 
reflexion-spot length ~ (parallel to the rotation axis) 
without any camera translation; and then of determining 
the additional _A~ introduced by the movement of the 


